Proportionale Funktionen – direkte und indirekte?
Proportionale Zuordnungen sind – ebenso wie die antiproportionalen Zuordnungen – spezielle Funktionen. Eine Funktion mit der Funktionsgleichung f(x) = mx oder y = kx heißt proportionale Funktion. Aus der Funktionsgleichung kannst du ablesen, wie der Graph der Funktion verläuft. Der Proportionalitätsfaktor m bzw. k gibt die Steigung der Geraden an. Der Graph der Funktion verläuft immer durch den Koordinatenursprung. Somit können wir hier auch von einer affinen Funktion sprechen.
Jede proportionale Funktion ist eine lineare Funktion aber nicht jede lineare Funktion ist eine proportionale Funktion. Eine proportionale Funktion ist eine lineare Funktion, bei der der Y-Achsenabschnitt 0 ist. Eine Zuordnung x → y heißt direkt proportional, wenn sich jeder y–Wert durch Multiplikation des x–Wertes mit derselben Zahl (Proportionalitätsfaktor) ergibt. Erkennungszeichen für direkte Proportionalität. Je mehr, desto mehr.
Um den Proportionalitätsfaktor einer proportionalen Zuordnung zu berechnen genügt es, sich ein Wertepaar (x|y) herauszunehmen und diese zu dividieren. Und zwar immer so, dass man die zugeordnete Größe durch die Grundgröße dividiert. Proportionale Zuordnungen geben gleichmäßiges Wachstum an. Verdoppelt, verdreifacht oder halbiert sich eine Größe, dann verdoppelt, verdreifacht oder halbiert sich auch die ihr zugeordnete Größe (2 Teile: 1 € → 4 Teile: 2 €). Der Quotient proportionaler Wertepaare ist immer gleich groß.
Was sind indirekt proportionale Funktionen?
Indirekte Proportionalität, umgekehrte Proportionalität oder Antiproportionalität besteht zwischen zwei Größen, wenn sich eine proportional zum Kehrwert der anderen verhält, oder gleichbedeutend, das Produkt der Größen konstant ist. Die eine Größe ist dann eine reziprok proportionale (auch antiproportionale) Funktion der anderen Größe. Die Verdopplung (Verdreifachung, Halbierung, …) der einen ist mit einer Halbierung (Drittelung, Verdopplung, …) der anderen verbunden. Der Funktionsgraph ist eine Hyperbel, die sich den Koordinatenachsen asymptotisch annähert.
Bei der indirekten Proportionaliät (umgekehrte Proportionalität, Antiproportionalität) ist das Produkt zweier Wertepaare (x|y) immer konstant. Dieses Produkt wird als die Proportionalitätskonstante k oder m bezeichnet und es gilt: yx = k oder y = xk.
Eine Zuordnung x → y heißt indirekt proportional, wenn jeder x–Wert durch Multiplikation mit dem zugehörigen y–Wert eine gleich große Zahl ergibt. Erkennungszeichen für indirekte Proportionalität: Je mehr, desto weniger.
Reziproke Proportionalität, indirekte Proportionalität, umgekehrte Proportionalität oder Antiproportionalität besteht zwischen zwei Größen, wenn sich eine proportional zum Kehrwert der anderen verhält, oder gleichbedeutend, das Produkt der Größen konstant ist.