Die Ableitung einer Funktion – Differenzieren

Die Ableitung einer Funktion einer reellen Variablen misst die Empfindlichkeit gegenüber einer Änderung des Funktionswertes. Der Ausgabewert bezieht sich dabei auf eine Änderung des Arguments (Eingabewertes). Ableitungen sind ein grundlegendes Werkzeug der Analysis. Zum Beispiel ist die Ableitung der Position eines sich bewegenden Objekts in Bezug auf die Zeit die Geschwindigkeit des Objekts. Sie misst, wie schnell sich die Position des Objekts ändert, wenn die Zeit fortschreitet.

Die Ableitung einer Funktion einer einzelnen →Variablen bei einem gewählten Eingabewert ist die Steigung der Tangente. Wenn sie existiert, beschreibt sie die Tangente am Graphen der Funktion an diesem Punkt. Die Tangentenlinie ist die beste lineare Annäherung der Funktion in der Nähe dieses Eingangswertes. Aus diesem Grund wird die Ableitung oft als „momentane Änderungsrate“ beschrieben. Das heißt als das Verhältnis der momentanen Änderung der abhängigen Variablen zu der der unabhängigen Variablen.

Ableitungen können auf Funktionen mehrerer reeller Variablen verallgemeinert werden. Bei dieser Verallgemeinerung wird die Ableitung in eine lineare Transformation umgedeutet. Der Graph ist die beste lineare Annäherung an den Graphen der ursprünglichen Funktion. Die Jacobimatrix ist die Matrix, die diese lineare Transformation in Bezug auf die durch die Wahl der unabhängigen und abhängigen Variablen gegebene Grundlage darstellt. Du kannst sie auf die partiellen Ableitungen in Bezug auf die unabhängigen Variablen berechnen. Für eine reellwertige Funktion mehrerer Variablen reduziert sich die Jacobimatrix auf den Gradientenvektor.

Wie berechnet man die Ableitung?

Der Prozess, eine Ableitung zu finden, nennt man Differenzierung. Den umgekehrte Prozess nennt man Antidifferenzierung. Das fundamentale Theorem der Analysis verbindet Antidifferenzierung mit Integration. Differentiation und →Integration sind die beiden Grundoperationen in der Ein-Variablen-Kalkulation.

Differenzierung ist die Aktion der Berechnung einer Ableitung. Die Ableitung einer Funktion y = f(x) einer Variablen x ist ein Maß für die Rate, mit der sich der Wert y der Funktion in Bezug auf die Änderung der Variablen x ändert. Sie wird Ableitung von f in Bezug auf x genannt. Wenn x und y reelle Zahlen sind und wenn der Graph von f gegen x aufgetragen wird, ist die Ableitung die Steigung dieses Graphen an jedem Punkt.

Steigung einer →linearen Funktion: m = Δy/Δx

Der einfachste Fall, abgesehen vom trivialen Fall einer konstanten Funktion, ist, wenn y eine lineare Funktion von x ist, was bedeutet, dass der Graph von y eine Linie ist. In diesem Fall ist y = f(x) = mx + b, für die reellen Zahlen m und b, und die Steigung m ist gegeben durch:

m = Δy/Δx

wobei das Symbol Δ (Delta) eine Abkürzung für „Veränderung“ ist, und die Kombinationen Δx und Δy beziehen sich auf entsprechende Änderungen.

Was ist das Tangentenproblem?

Ein zentrales Thema in der →Differentialrechnung ist das Tangentenproblem. Du wirst sehen, mit Hilfe von Grenzwerten und Steigungsberechnung ist es gar nicht so schwierig, damit umzugehen.

Beim Tangentenproblem geht es um die Frage, ob in einem bestimmten Punkt einer Kurve eine Tangente vorhanden ist und wie groß deren Steigung ist. Mittels Differenzenquotient und Differentialquotient kannst du diese sehr einfach berechnen.

Das Tangentenproblem

Die Aufgabe, die Tangente an die Bildkurve einer Funktion f(x) zu einem beliebigen Punkt P mit den Koordinaten x und f(x) zu legen, führt bei der Ermittlung der Steigung zu einem Quotienten besonderer Art, dem Differentialquotienten. Die Untersuchung der Eigenschaften des Differentialquotienten einer Funktion ist Gegenstand der Differentialrechnung. Als Voraussetzung dafür solltest du wissen, wie du die Steigung einer Geraden bildest.

Der Graph einer Funktion f verläuft zwischen den Punkten P1und P2verschieden steil. Über die →Steilheit des Graphen kannst du an einer bestimmten Stelle x0zwischen Px1und Px2keine genaue Angabe machen. Es lässt sich lediglich eine mittlere Steilheit zwischen P1und P2angeben, die der Steigung der Geraden g durch diese Punkte entspricht. Der Graph wird sozusagen zwischen den Punkten P1und P2durch die Gerade linearisiert.

Wir suchen die Steigung des Funktionsgraphen im Punkt P1. Dazu lassen wir den Summanden x immer kleiner werden, bis aus der Sekante eine Tangente wird. Der Wert von y bestimmt die Lage des Punktes P2. Für x gleich Null fallen P1und P2zusammen.

Durch Null darfst du aber nicht teilen, somit musst du zumindest versuchen, so nahe wie möglich an den Nennwert Null heranzukommen – das heißt, du musst den Summanden x möglichst klein werden lassen. Er soll also gegen Null gehen, aber den Wert Null gerade nicht erreichen. Im Differentialquotienten geht dann der Wert für xgegen Null. Und es wird ein Grenzwert (Limes) gebildet.

Cookie Consent mit Real Cookie Banner