Was ist eine Primzahl?
Eine natürliche Zahl die größer als 1 ist, ist eine Primzahl, wenn sie nur durch sich selbst und durch 1 teilbar ist. Das bedeutet, eine natürliche Zahl ist eine Primzahl, wenn sie genau zwei Teiler besitzt.
Eine Primzahl ist eine natürliche Zahl, die größer als 1 und ausschließlich durch sich selbst und durch 1 teilbar ist. Das Wort „Primzahl“ leitet sich aus dem lateinischen numerus primus ‚erste Zahl‘ ab. Wobei primus speziell ‚der Anfang oder das Erste bedeutet, sodass eine ‚Anfangszahl‘ gemeint ist, die man aus keiner anderen vorher gehenden Zahl konstruieren kann.
Die Menge der Primzahlen wird in der Regel mit dem Symbol P bezeichnet. Mit P verknüpft ist sie eine Folge, die nach ihrer Größe geordneten Primzahlen enthält, die man auch Primzahlfolge nennt.
Die Bedeutung der Primzahl
Für viele Bereiche der Mathematik beruht die Primzahl aus folgenden drei Definitionen:
- Existenz und Eindeutigkeit der Primfaktorzerlegung: Jede natürliche Zahl, die größer als 1 und selbst keine Primzahl ist, lässt sich als Produkt von mindestens zwei Primzahlen schreiben. Diese Produktdarstellung ist bis auf die Reihenfolge der Faktoren eindeutig. Zum Beweis dient das
- Ist ein Produkt zweier natürlicher Zahlen durch eine Primzahl teilbar, so ist mindestens einer der Faktoren durch sie teilbar.
- Primzahlen lassen sich nicht als Produkt zweier natürlicher Zahlen, die beide größer als 1 sind, darstellen.
Diese Eigenschaften kannst du in der Algebra für Verallgemeinerungen des Primzahlbegriffs nutzen. Eine Zahl, die das Produkt von zwei oder mehr Primfaktoren ist, nennt man zusammengesetzt. Die Zahl 1 ist weder prim noch zusammengesetzt, was mit ihrer Invertierbarkeit zusammenhängt. Alle anderen natürlichen Zahlen sind eines von beiden, entweder prim (also Primzahl) oder zusammengesetzt.
Die Primfaktorzerlegung ist die Darstellung einer natürlichen Zahl n als Produkt aus Primzahlen, die man dann als Primfaktoren von n bezeichnet. Diese Darstellung ist eindeutig und zählt zu den grundlegenden und klassischen Werkzeugen der Zahlentheorie. Sie ist Gegenstand des Fundamentalsatzes der Arithmetik. Es ist bisher kein effizientes Faktorisierungsverfahren bekannt, um die Primfaktorzerlegung einer beliebigen Zahl zu erhalten.