Kreisbogen und Radius eines Kreissegments

Ein Kreissektor ist ein Tortenstück eines Kreises. Dieser Teilbereich wird von 2 Radien und einem Kreisbogen b begrenzt. Die Fläche eines Kreissegment berechnet man, indem man vom Flächeninhalt des Kreissektors den Flächeninhalt des Dreiecks abzieht. Ein Kreisausschnitt wird also gleichsam von zwei Radien aus einem Kreis „herausgeschnitten“. Der zu einem Kreissektor gehörende Teil der Kreislinie wird als Kreisbogen bezeichnet, der Winkel zwischen den beiden Radien als Mittelpunktswinkel.

Ein Teil eines Kreises heißt Kreissektor oder Kreisausschnitt. Der Teil des Umfangs, der zu diesem Kreissektor gehört, heißt Kreisbogen. Der Anteil des Kreisbogens am gesamten Umfang entspricht dem Anteil des Winkels an 360° (gesamter Kreis).

Was ist ein Kreissegment?

Ein Kreissegment oder Kreisabschnitt ist in der Geometrie die Teilfläche einer Kreisfläche und wird von einem Kreisbogen und einer Kreissehne begrenzt. Im Gegensatz begrenzt der Kreisbogen und zwei Kreisradien den Kreissektor.

Der Zentriwinkel alpha hat seinen Scheitel im Kreismittelpunkt. Beträgt der Zentriwinkel α = 90° handelt es sich um gleichschenklig-rechtwinkliges Dreieck. Ein gleichschenklig rechtwinkliges Dreieck ist ein halbes Quadrat.

Der Flächeninhalt eines Kreissegments lässt sich aus dem Kreisradius r und dem zugehörigen Mittelpunktswinkel α berechnen. Man ermittelt dazu die Flächeninhalte des entsprechenden Kreissektors und des in der Skizze dargestellten gleichschenkligen Dreiecks AMB. Ist der Mittelpunktswinkel kleiner als 180°, muss man diese Flächeninhalte subtrahieren (Sektorfläche minus Dreiecksfläche). Bei einem Mittelpunktswinkel über 180° sind die Flächeninhalte zu addieren. Wenn der Mittelpunktswinkel genau 180° beträgt, ist das Kreissegment eine Halbkreisfläche, und die Fläche des Dreiecks ist 0.

Was ist der Kreisbogen?

Legt man auf einem Kreis zwei beliebige Punkte fest und verbindet diese durch Strecken mit dem Mittelpunkt des Kreises, so stellen die beiden Teile der Kreisfläche, die durch diese Strecken voneinander getrennt werden, Kreisausschnitte (auch Kreissektor genannt) dar. Ein Kreisausschnitt wird also gleichsam von zwei Radien aus einem Kreis „herausgeschnitten“. Der zu einem Kreissektor gehörende Teil der Kreislinie wird als Kreisbogen bezeichnet, der Winkel zwischen den beiden Radien als Mittelpunktswinkel.

Was sind Sehne und die Höhe eines Segmentes?

Die Strecke bezeichnet, die sich ergibt, wenn man zwei Radien abträgt und die Schnittpunkte mit der Kreislinie verbindet bezeichnet man als Sehne. Die Formel lautet s = 2·r·sin(α/2) , wobei α der Winkel zwischen den Radien ist.

Die Segmenthöhe wird auch Sagitta genannt, und die dazugehörigen Formeln lassen sich mithilfe des Satzes von Pythagoras herleiten. Die Strecke der Differenz von Radius und Segmenthöhe bildet mit der Hälfte der Kreissehne ein rechtwinkliges Dreieck mit dem Radius als Hypotenuse

Wahrscheinlichkeitsrechnung Grundlagen – Laplace Experiment

Ein Zufallsexperiment ist ein Vorgang, bei dem mindestens zwei Ergebnisse möglich sind und bei dem man vor Ablauf des Vorgangs das Ergebnis nicht vorhersehen kann. Beispiel: Ein Würfel wird geworfen. Auf welcher Seite er landet, ist vor Abwurf des Würfels aus der Hand nicht zu sagen. Das Zufallsexperiment gehört damit zum Gebiet der Wahrscheinlichkeitsrechnung.

Unter einem Laplace Experiment versteht man ein Zufallsexperiment, bei dem alle Möglichkeiten des Versuchsausgangs die gleiche Wahrscheinlichkeit aufweisen. Man spricht hier oftmals von „gleichwahrscheinlich“.

Woran erkennt man nun, ob es sich um einen Laplace Versuch handelt oder nicht? Die Frage ist oftmals nicht ganz so einfach zu beantworten und erfordert in vielen Fällen Vorkenntnisse auf dem entsprechenden Gebiet. Es folgen ein paar Beispiele:

  • Ein normaler Würfel hat sechs Seiten. Sofern an dem Würfel nichts manipuliert wurde, ist die Wahrscheinlichkeit, dass du die Zahl 1 würfelst, genauso groß, wie es die Wahrscheinlichkeit ist, dass du die Zahl 6 würfelst. Es handelt sich somit um ein Laplace Experiment / Versuch.
  • Eine Münze hat zwei Seiten: Kopf und Zahl. Bei einer nicht manipulierten Münze ist die Wahrscheinlichkeit „Zahl“ zu werfen genauso groß wie die Wahrscheinlichkeit „Wappen“ zu werfen. Somit handelt es sich um einen Laplace Versuch.
  • Bei einem Pferderennen treten 10 Reiter samt Pferde gegeneinander an. Da sich die Fähigkeiten der Teilnehmer voneinander unterschieden, ist die Chance auf einen Sieg bei jedem Teilnehmer verschieden. Somit haben wir kein Laplace Experiment.

Man sollte versuchen solche Aufgaben mit etwas gesundem Menschenverstand anzupacken. Hat man keinen Grund, das Eintreten irgendeines der Ergebnisse eines Zufallsexperiments für wahrscheinlicher als das der anderen Ergebnisse zu halten, so kann man erst einmal von einem Laplace Experiment ausgehen.

Ein Zufallsexperiment ist ein Vorgang, bei dem mindestens zwei Ergebnisse möglich sind und bei dem man vor Ablauf des Vorgangs das Ergebnis nicht vorhersehen kann. Auf welcher Seite er landet, ist vor Abwurf des Würfels aus der Hand nicht zu sagen

Zufallsexperiment in der Wahrscheinlichkeitsrechnung?

Unter einem einstufigen Zufallsexperiment der Wahrscheinlichkeitsrechnung versteht man ein Zufallsexperiment, welches nur ein einziges Mal durchgeführt wird.

  • Du wirfst einen Würfel einmal
  • oder du wirfst eine Münze einmal

In den meisten Fällen ist es notwendig, einen Versuch mehrfach durchzuführen. So könntest du beim Wurf eines Würfels die Zahl 4 würfeln. Doch nach einem Versuch könntest du dann glauben, dass du bei einem Würfel immer die Zahl 4 werfen wirst. Aus diesem Grund sind einstufige Zufallsexperimente in den meisten Fällen nicht aussagekräftig.

Von einem mehrstufigen Zufallsexperiment sprich man, wenn ein zufälliger Vorgang mehrfach nacheinander durchgeführt wird. Beispiel: Wirf einen Würfel mehrfach hintereinander. Besteht ein mehrstufiger Zufallsversuch aus k – Teilversuchen, so spricht man von einem k-stufigen Zufallsexperiment. Der Ausgang eines Zufallsexperimentes kann dabei Ergebnis genannt werden. Die Ergebnismenge enthält alle möglichen Ergebnisse eines Zufallsexperimentes.

Das Gegenereignis wird mit einem Strich über dem E dargestellt. Nimmt man die Wahrscheinlichkeit von Ereignis und Gegenereignis zusammen, ergibt dies in Summe 1 (oder in Prozent sind es 100 %). Kennt man das Ereignis kann man damit das Gegenereignis ausrechnen und umgekehrt.

 

Kugel – Berechnung der Oberfläche und Volumen

Die Kugelfläche ist die bei der Drehung einer Kreislinie um einen Kreisdurchmesser entstehende Fläche. Sie ist eine Rotationsfläche sowie eine spezielle Fläche zweiter Ordnung und wird beschrieben als die Menge (der geometrische Ort) aller Punkte im dreidimensionalen euklidischen Raum, deren Abstand von einem festen Punkt des Raumes gleich einer gegebenen positiven reellen Zahl r ist. Der feste Punkt wird als Mittelpunkt oder Zentrum der Kugel bezeichnet, die Zahl r als Radius der Kugel.

Die Kugelfläche teilt den Raum in zwei getrennte offene Untermengen, von denen genau eine konvex ist. Diese Menge heißt das Innere von Kugeln. Die Vereinigungsmenge einer Kugelfläche und ihres Inneren heißt Kugelkörper oder Vollkugel. Die Kugelfläche wird auch Kugeloberfläche oder Sphäre genannt.

Sowohl Kugelfläche als auch Kugelkörper werden oft kurz als Kugeln bezeichnet, wobei aus dem Zusammenhang klar sein muss, welche der beiden Bedeutungen gemeint ist.

Kugeln besitzen unendlich viele Symmetrieebenen, nämlich die Ebenen durch den Kugelmittelpunkt. Ferner sind Kugeln drehsymmetrisch bezüglich jeder Achse durch den Mittelpunkt und jedes Drehwinkels und punktsymmetrisch bezüglich ihres Mittelpunktes.

Was ist eine Kugel?

Kugeln besitzen weder Kanten noch Ecken. Ihre Oberfläche lässt sich nicht verzerrungsfrei in der Ebene ausbreiten. In der Differentialgeometrie hat eine Kugel mit Radius r an jedem Punkt der Oberfläche die gaußsche Krümmung. Auch hieraus folgt, dass die Kugel nicht verzerrungsfrei auf die Ebene abgebildet werden kann.

Die kürzeste Entfernung zwischen zwei Punkten auf der Oberfläche der Kugel (Geodäte) liegt auf einem Großkreis, also einem Kreis durch den Mittelpunkt der Kugel. Geodäten auf der Erdkugel liegen zum Beispiel auf den Längenkreisen, nicht aber auf den Breitenkreisen – mit Ausnahme des Äquators.

Kugeln haben die kleinste Oberfläche von allen Körpern mit einem vorgegebenen Volumen. Von allen Körpern mit vorgegebener Oberfläche umschließt sie das größte Volumen. Aus diesem Grund tritt die Kugel auch in der Natur auf. Blasen (siehe Seifenblase) und Wassertropfen sind Kugeln (ohne Berücksichtigung der Gravitation), weil die Oberflächenspannung versucht, die Oberfläche zu minimieren. Planeten sind näherungsweise Kugeln, weil sie bei ihrer Entstehung flüssig waren und die Kugeln die Form mit der größten Gravitationsbindungsenergie sind. Mathematische Kugeln sind eine Idealform. In der Natur auftretende Kugeln haben stets nur näherungsweise Kugelform.

Kugeln kannst du auch als Rotationskörper aufgefassen. Lässt man eine Halbkreisfläche um ihren Durchmesser rotieren, so entsteht dadurch eine Kugel. Wird der Kreis durch eine Ellipse ersetzt, die um eine ihrer Achsen rotiert, ergibt sich ein Rotationsellipsoid.

Zylinder – Oberfläche und Volumen eines Drehzylinders

In der Mathematik definiert man einen Zylinder allgemein als eine ebene Kurve in einer Ebene. Vor allem dann, wenn entlang einer Gerade, die nicht in der Ebene enthalten ist, diese um eine feste Strecke verschoben wird. Je zwei sich entsprechenden Punkte der Kurven und der verschobenen Kurve werden durch eine Strecke verbunden. Die Gesamtheit dieser parallelen Strecken bildet die zugehörige Zylinder-Fläche. Die Kurve nennt man Leitkurve. Eine auf dem Zylinder liegende Gerade heißt Erzeugende oder Mantellinie.

Ist die Kurve ein Kreis, entsteht ein schiefer Kreiszylinder. Falls a→⊥Ebene ist, ergibt sich ein senkrechter Kreiszylinder. Ist die Kurve eine geschlossene Kurve, kann man die Mantelfläche mit den beiden Begrenzungsflächen wieder als Oberfläche eines Körpers auffassen. Ist die Kurve nicht geschlossen, z. B. ein Parabelbogen, so ist der Zylinder nur die oben erklärte Mantelfläche, die allerdings Teil einer Oberfläche eines Körpers sein kann.

Die geometrische Besonderheit einer Zylinderfläche besteht in der folgenden Tatsache:

  • Eine Zylinderfläche enthält Geraden, sie ist eine Regelfläche, und kann unverzerrt in die Ebene abgewickelt werden.
  • Insbesondere diese Eigenschaft macht die Zylinderfläche für die Herstellung von Blechverkleidungen interessant.
  • Ist die erzeugende Kurve ein Polygon, so spricht man von einem Prisma.

Was ist ein Zylinder?

Ein Zylinder ist im einfachsten Fall eine Fläche, deren Punkte von einer festen Gerade, der Achse, denselben Abstand r haben. Da solch eine Fläche unendlich ausgedehnt ist, beschneidet man sie normalerweise mit zwei parallelen Ebenen der Distanz h.

Sind die Schnittebenen senkrecht zur Achse, entsteht ein senkrechter (oder gerader) Kreiszylinder mit Radius r und Höhe h. Die so beschnittene Fläche nennt man Mantelfläche des Zylinders, die Schnittflächen senkrecht zur Achse kannst du jeweils als Grundfläche bezeichnen.

Da man sich einen geraden Kreiszylinder auch durch Rotation einer Strecke um die (parallele) Zylinderachse erzeugt denken kann, wird er auch Drehzylinder genannt. Die erzeugenden Strecken nennt man Mantellinien des Zylinders oder auch Erzeugende.

In der Technik versteht man unter einem Zylinder oft den Körper, der von der Mantelfläche und den beiden Schnittkreisflächen eingeschlossen wird.

Was ist ein Baumdiagramm?

Das Baumdiagramm wird verwendet, um den möglichen Ablauf eines mehrstufigen Zufallsexperiments mit endlich vielen möglichen Ergebnissen in seiner komplexen Struktur zu erfassen, darstellen und analysieren. Zudem ist es damit möglich, auf Grundlage der ersten und zweiten Pfadregel die Wahrscheinlichkeiten für atomare und zusammengesetzte Ereignisse eines solchen Experiments in einfacher Weise zu berechnen.

Um beim Rechnen mit Wahrscheinlichkeiten einen guten Überblick zu behalten, legen wir sogenannte Baumdiagramme an. Aus einem Baumdiagramm kannst du die unterschiedlichen Ausgänge, und die jeweiligen Wahrscheinlichkeiten, eines Zufallsexperimentes ablesen. Der große Vorteil solcher Baumdiagramme ist, dass du auch mehrstufige Zufallsexperimente übersichtlich darstellen kannst.

Wie verwende ich das Baumdiagramm?

Ein Baumdiagramm ist eine graphische Darstellung, welche die möglichen Ergebnisse eines bestimmten Ablaufs hierarchischer Entscheidungen zeigt. In der Wahrscheinlichkeitsrechnung werden Baumdiagramme zur Berechnung von Wahrscheinlichkeiten mehrstufiger Zufallsexperimente eingesetzt.

Dabei verzweigt sich ein stilisierter Baum auf jeder Stufe des Zufallsexperiments in Äste, die den möglichen Ergebnissen bzw. Ereignissen der entsprechenden Stufe des Zufallsexperiments entsprechen, wobei die Verzweigungsstelle mit den entsprechenden Ergebnissen bzw. Ereignissen beschriftet wird. Baumdiagramme werden häufig von links nach rechts, aber nicht selten auch von oben nach unten gezeichnet.

Das Baumdiagramm verwendet man in der Stochastik zur Darstellung möglicher Versuchsausgänge von Zufallsexperimenten. Mit einem Baumdiagramm kann man unter anderem die Wahrscheinlichkeiten der verschiedenen Versuchsausgänge in einfacher Weise bestimmen.

Die Stochastik ist ein Teilgebiet der Mathematik und fasst als Oberbegriff die Gebiete Wahrscheinlichkeitstheorie und Statistik zusammen.

Das Baumdiagramm dient dazu Zufallsexperimente übersichtlich darzustellen. Dies macht insbesondere dann sind, wenn das Zufallsexperiment aus mehreren Stufen besteht. Wie wahrscheinlich es ist, dass ein bestimmter Pfad oder mehrere Pfade eintreten, berechnet man mit den Pfadregeln.

Die Pfadwahrscheinlichkeit ist die Wahrscheinlichkeit, dass ein solches Ergebnis eintritt. Um die Wahrscheinlichkeiten einzelner Ergebnisse eines mehrstufigen Zufallsexperimentes zu berechnen, ermittelst du die zugehörigen Pfadwahrscheinlichkeiten mit Hilfe der Produktregel

Für die Berechnung der oben genannten Wahrscheinlichkeiten gelten zwei Pfadregeln.

Erste Pfadregel (Produktregel):

Bei einem mehrstufigen Zufallsexperiment ist die Wahrscheinlichkeit eines atomaren Ereignisses gleich seiner Pfadwahrscheinlichkeit, d.h. gleich dem Produkt der Wahrscheinlichkeiten entlang des Pfades, der dem zugehörigen Ergebnis im Baumdiagramm entspricht.

Zweite Pfadregel(Summenregel):

Bei einem mehrstufigen Zufallsexperiment ist die Wahrscheinlichkeit eines (zusammengesetzten) Ereignisses gleich der Summen der Wahrscheinlichkeiten aller der Pfade, die zu seinen zugehörigen Ergebnissen führen.

Der Satz von Bayes

Der Satz von Bayes ermöglicht es, die bedingte Wahrscheinlichkeit zweier Ereignisse A und B zu bestimmen, falls eine der beiden bedingten Wahrscheinlichkeiten bereits bekannt ist. Dieser mathematische Satz ist auch unter den Namen Formel von Bayes oder Bayes Theorem bekannt.

Für zwei Ereignisse A und B mit P(B) größer 0 lässt sich die Wahrscheinlichkeit von A unter der Bedingung, dass B eingetreten ist, berechnen. Dies geschieht durch die Wahrscheinlichkeit von B unter der Bedingung, dass A eingetreten ist, mit dem Satz von Bayes.

P(A|B)= P(B|A)*P(A) / P(B)

Hierbei ist P(A|B) die (bedingte) Wahrscheinlichkeit des Ereignisses A unter der Bedingung, dass B eingetreten ist, P(B∣A) die (bedingte) Wahrscheinlichkeit des Ereignisses B unter der Bedingung, dass A eingetreten ist, P(A) die A-priori-Wahrscheinlichkeit des Ereignisses A und P(B) die A-priori-Wahrscheinlichkeit des Ereignisses B.

Wahrscheinlichkeitsrechnung mit dem Satz von Bayes

Der Satz von Bayes erlaubt in gewissem Sinn das Umkehren von Schlussfolgerungen. Man geht von einem bekannten Wert P(B∣A) aus, ist aber eigentlich an dem Wert P(A∣B) interessiert. Beispielsweise ist es von Interesse, wie groß die Wahrscheinlichkeit ist, dass jemand eine bestimmte Krankheit hat, wenn ein dafür entwickelter Schnelltest ein positives Ergebnis zeigt. Aus empirischen Studien kennt man in der Regel die Wahrscheinlichkeit dafür, mit der der Test bei einer von dieser Krankheit befallenen Person zu einem positiven Ergebnis führt.

Die gewünschte Umrechnung ist nur dann möglich, wenn man die Prävalenz der Krankheit kennt, das heißt die (absolute) Wahrscheinlichkeit, mit der die betreffende Krankheit in der Gesamtpopulation auftritt.

Für das Verständnis kann ein Entscheidungsbaum oder eine Vierfeldertafel helfen. Das Verfahren ist auch als Rückwärtsinduktion bekannt.

Mitunter begegnet man dem Fehlschluss, direkt von P(B∣A) auf P(A∣B) schließen zu wollen, ohne die A-priori-Wahrscheinlichkeit P(A) zu berücksichtigen. Beispielsweise indem angenommen wird, die beiden bedingten Wahrscheinlichkeiten müssten ungefähr gleich groß sein. Wie der Satz von Bayes zeigt, ist das aber nur dann der Fall, wenn auch P(A) und P(B) ungefähr gleich groß sind.

Ebenso ist zu beachten, dass bedingte Wahrscheinlichkeiten für sich allein nicht dazu geeignet sind, eine bestimmte Kausalbeziehung nachzuweisen.