Die Eulergleichung bei elastischer Knickung

Beanspruchst du einen sehr schlanken Stab auf Druck, dann besteht die Gefahr des seitlichen Ausknickens. Ebenfalls besteht die Gefahr der Knickung, wenn die Stablänge l im Verhältnis zu seiner Querschnittsfläche A sehr groß ist. Das kann auch dann geschehen, wenn der Stab genau in Richtung seiner Achse belastet wird. Und auch dann, wenn die Druckspannung noch unter der Proportionalitätsgrenze (siehe Spannungs-Dehnungsdiagramm oder Hook´sche Gesetz) liegt. 

Die Tragfähigkeit eines solchen Bauteils ist also schon vorher erschöpft. Knickung ist daher auch kein Spannungsproblem wie Zug, Druck, Biegung und Torsion, sondern ein Stabilitätsproblem. Trotz gleicher Querschnittsfläche und gleicher Druckkraft steigt die Gefahr des Ausknickens – seitlichem Wegknicken – mit zunehmender Länge und abnehmendem Querschintt. 

Durch die besondere Problematik der Knickung führte man zur genauen Definition besonderer Größen ein. Die Knickkraft FK ist diejenige Kraft, bei der das Ausknicken eines Stabes gerade beginnt. Dividierst du die Knickkraft durch die Querschnittsfläche, erhältst du eine Spannung. Diese bezeichnet man als Knickspannung. Entsprechend der Definition der Knickkraft wirkt die Knickspannung dann, wenn der Stab auszuknicken beginnt. 

Da ein Bauteil nicht ausknicken darf, muss die Druckkraft, die durch die tatsächliche Belastung entsteht, wesentlich kleiner bleiben als die Knickkraft. Das gleiche gilt auch für die tatsächlich im Bauteil vorhandene Druckspannung und für die Knickspannung. Knickkraft und Knickspannung sind also Werte, die in der Praxis niemals erreicht werden dürfen. 

Fazit: Die Knickkraft (Knickspannung) ist diejenige Kraft (Spannung), bei der das Ausknicken beginnt. Die vorhandene Druckkraft muss mit Sicherheit unter der Knickkraft bleiben, ebenso die vorhandene Druckspannung unter der Knickspannung. 

Die Eulergleichung bei elastischer Knickung

Für den Fall, dass die Knickspannung noch unterhalb der Proportionalitätsgrenz des Werkstoffes liegt, hat Euler eine Gleichung für die Knickkraft entwickelt. 

Die Knickkraft, also diejenige Kraft, bei der das Knicken gerade beginnen würde, kannst du allein durch die Führungsverhältnisse verändern. Und zwar dann, wenn sich die Stabenden in Richtung der Stabachse aufeinander zu bewegen. Je sicherer es ist, dass die Druckkraft während des Zusammendrückens exakt in der Stabachse wirkt, desto größer kannst du die Knickkraft ansetzen. 

Je höher die Proportionalitätsgrenze des Werkstoffes liegt, umso kleiner ist der Grenzschlankheitsgrad. Das heißt, umso größer wird der Bereich, für den die Eulergleichung gilt. 

Die Eulergleichung gilt nur, solange dein errechneter Schlankheitsgrad gleich oder größer ist als der angegebene Grenzschlankheitsgrad.

Cookie Consent mit Real Cookie Banner