Widerstandsmoment

Das Widerstandsmoment eines Trägerquerschnittes steht in Zusammenhang mit dem Flächenträgheitsmoment. Mit seiner Hilfe berechnet man bei statischen Berechnungen die Verformung eines Trägers unter Krafteinwirkung. Bei Kräften senkrecht zu der jeweiligen Bezugsachse will die auftretende Kraft den Körper biegen bzw. um diese Achse drehen. Wird die Drehung durch ein Festlager verhindert, entsteht ein Biegemoment. Widerstandmomente berechnet man immer in Bezug auf die jeweilige Momentenachse (x/y).

Als Widerstandsmoment W wird in der technischen Mechanik eine allein aus der Geometrie eines Balkenquerschnitts abgeleitete Größe bezeichnet. Sie ist ein Maß dafür, welchen Widerstand ein Balken bei Belastung der Entstehung innerer Spannungen entgegensetzt. 

Welche Widerstandsmomente gibt es?

  • Bei der Belastung Biegen wird vom axialen oder Biegewiderstandsmoment Wx gesprochen. 
  • beim Verwinden (Torsion) wird vom polaren Widerstandsmoment Wp.
  • oder Torsionswiderstandsmoment Wt gesprochen.

Das Widerstandsmoment eines Querschnitts steht in einfachem geometrischen Zusammenhang mit dem Flächenträgheitsmoment. Mit Hilfe dieses Widerstandsmomentes berechnet man bei der Querschnitts-Bemessung die Verformung eines Balkens bei Belastung. Widerstandsmoment und Flächenträgheitsmoment sind oft in gemeinsamen Tabellen. Abhängig sind diese von den typischen Abmessungen geometrisch einfacher Flächen und standardisierter Materialprofile (z. B. Stahlprofile), in allgemeinen technischen Handbüchern enthalten,.

Bei Kräften senkrecht zu einer Bezugsachse will die Kraft den Körper biegen bzw. – sofern ein Hebel vorhanden – um diese Achse drehen. Wird die Drehung durch Einspannung verhindert, entsteht ein Biege- oder Torsionsmoment. Widerstandmomente werden immer in Bezug auf die jeweilige Momentenachse berechnet.

Das Widerstandsmoment ist definiert als:

W = I / emax

mit

  • dem Flächenträgheitsmoment I
  • dem maximalen senkrechten Abstand emax der Randfaser (Querschnittsrand) zur neutralen (spannungsfreien) Faser. In der Randfaser treten die gesuchten maximalen Bauteilbeanspruchungen auf (siehe unten: Anwendung).

Die Einheit des Widerstandsmoments ist m3

Für symmetrische Querschnitte sind die Widerstandsmomente in den Randfasern parallel zur Symmetrieachse gleich. Deshalb sind auch die Spannungen in diesen Fasern gleich, wenn die Biegekräfte senkrecht zu dieser Symmetrieachse wirken.

Was gibt das Widerstandsmoment an?

Das Widerstandsmoment lässt sich aus dem Flächenträgheitsmoment bestimmen. Es ist ein Maß dafür, welchen Widerstand ein belasteter Balken oder Bauteil der Entstehung von innerer Spannung entgegensetzt.

Das Maß für einen Widerstand gegen eine Biegung heißt axiales Widerstandsmoment oder auch Biegewiderstandsmoment. Es wird verwendet, um die mechanischen Spannungen bei einer Biegebelastung zu berechnen.

 

Gleichmäßig verzögerte und beschleunigte Bewegung

beschleunigte Bewegung

Eine gleichmäßig beschleunigte Bewegung liegt vor, wenn sich bei einem Körper die Geschwindigkeit in jeweils gleichen Zeiten in gleichem Maße ändert, wenn also der Betrag der Beschleunigung konstant ist. Bei einer gleichmäßig beschleunigten geradlinigen Bewegung sind sowohl der Betrag der Beschleunigung als auch die Richtung der Beschleunigung immer gleich. Gleichmäßig beschleunigte Bewegungen können aber auch auf beliebigen anderen Bahnen erfolgen.

Was ist eine gleichmäßig beschleunigte Bewegung?

Gleichmäßig beschleunigte Bewegungen sind Bewegungen, bei denen die Beschleunigung bezüglich Stärke und Richtung konstant sind. Die gleichmäßige Bewegung ist eine geradlinige Bewegung, wenn Beschleunigung und Anfangsgeschwindigkeit kollinear sind. Ist dies nicht der Fall, entsteht eine →Parabel als Bahnkurve. 

Durch die Wahl eines Inertialsystems, in dem die Anfangsgeschwindigkeit null ist, erhält man stets eine geradlinige Bewegung. Wenn die Beschleunigung zu null wird, erhält man die gleichförmige Bewegung. Beispiele für eine gleichmäßig beschleunigte Bewegungen sind der freie Fall oder der schräge Wurf ohne Berücksichtigung des Luftwiderstandes.

Sofern die gleichmäßig beschleunigte Bewegung geradlinig ist, kann man für Berechnungen Zahlen statt Vektoren verwenden. Es genügt, die Orientierung des Geschwindigkeits- und des Beschleunigungsvektors durch das Vorzeichen auszudrücken. Die Bewegungsrichtung wird als positiv ausgezeichnet, die Gegenrichtung als negativ.

Verläuft die gleichmäßige Bewegung nicht geradlinig, so ist die allgemeinere →Vektorform zu verwenden. Eine gleichmäßig beschleunigte Bewegung ist eine Bewegung, bei der die Beschleunigung bezüglich Stärke und Richtung gleich bleibt (konstant ist)

Was ist die gleichmäßig verzögerte Bewegung?

Der Unterschied zwischen einer gleichmäßig beschleunigten und einer gleichmäßig verzögerten Bewegung liegt darin, dass der gleichmäßig beschleunigte Körper immer schneller wird, der gleichmäßig verzögerte Körper wird hingegen aus einer Anfangsgeschwindigkeit heraus immer langsamer, bis er schließlich zum stillstand kommt.

Eine Bremsbewegung ist eine beschleunigte Bewegung, immer dann wenn sich die Geschwindigkeit eines Körpers ändert, findet eine Beschleunigung statt. Im falle einer Bremsbewegung ist die Beschleunigung negativ, die Geschwindigkeit wird im laufe der Zeit kleiner.

Wir bezeichnen eine Bewegung als gleichmäßig verzögert, wenn eine konstante Beschleunigung a der Anfangsgeschwindigkeit v0 entgegenwirkt.

Die Eulergleichung bei elastischer Knickung

Ist bei der Beanspruchung auf Druck der Stab sehr schlank, dann besteht die Gefahr des seitlichen Ausknickens. Ebenfalls besteht die Gefahr der Knickung, wenn die Stablänge l im Verhältnis zu seiner Querschnittsfläche A sehr groß ist. Das kann geschehen, obwohl der Stab genau in Richtung seiner Achse belastet wird. Und obwohl die Druckspannung noch unter der Proportionalitätsgrenze liegt. 

Die Tragfähigkeit ist also schon vorher erschöpft. Knickung ist daher auch kein Spannungsproblem wie Zug, Druck, Biegung und Torsion, sondern ein Stabilitätsproblem. Trotz gleicher Querschnittsfläche und gleicher Druckkraft steigt die Gefahr des Ausknickens mit zunehmender Länge. 

Die besondere Problematik der Knickung hat zur Definition besonderer Größen geführt. Die Knickkraft ist diejenige Kraft, bei der das Ausknicken eines Stabes gerade beginnt. Dividierst du die Knickkraft durch die Querschnittsfläche, erhältst du eine Spannung. Diese bezeichnet man als Knickspannung. Entsprechend der Definition der Knickkraft wirkt die Knickspannung dann, wenn der Stab auszuknicken beginnt. 

Da ein Bauteil nicht ausknicken darf, ist dafür zu sorgen, dass die tatsächliche Belastung, die Druckkraft, immer wesentlich kleiner bleibt als die Knickkraft. Das gleiche gilt auch für die tatsächlich im Bauteil vorhandene Druckspannung und für die Knickspannung. Knickkraft und Knickspannung sind also Größen, die niemals erreicht werden dürfen. 

Die Knickkraft (Knickspannung) ist diejenige Kraft (Spannung), bei der das Ausknicken beginnt. Die vorhandene Druckkraft muss mit Sicherheit unter der Knickkraft bleiben, ebenso die vorhandene Druckspannung unter der Knickspannung. 

Die Eulergleichung bei elastischer Knickung

Für den Fall, dass die Knickspannung noch unterhalb der Proportionalitätsgrenz des Werkstoffes liegt, hat Euler eine Gleichung für die Knickkraft entwickelt. 

Die Knickkraft, also diejenige Kraft, bei der das Knicken gerade beginnen würde, kann man allein durch die Führungsverhältnisse verändern. Und zwar dann, wenn sich die Stabenden in Richtung der Stabachse aufeinander zu bewegen. Je sicherer es ist, dass die Druckkraft während des Zusammendrückens exakt in der Stabachse wirkt, desto größer kann die Knickkraft angesetzt werden. 

Je höher die Proportionalitätsgrenze des Werkstoffes liegt, umso kleiner ist der Grenzschlankheitsgrad, das heißt, umso größer wird der Bereich, für den die Eulergleichung gilt. 

Die Eulergleichung gilt nur, solange der errechnete Schlankheitsgrad gleich oder größer ist als der angegebene Grenzschlankheitsgrad.

Die Guldinschen Regeln für Volumen und Oberfläche

Rotationskörper werden in der Geometrie jene Körper genannt, dessen Oberfläche durch Rotation einer erzeugenden Kurve um eine Rotationsachse gebildet werden. Das Volumen und die Oberfläche kannst du mit den sogenannten Guldinschen Regeln errechnen. Wobei die Rotationsachse auch Figurenachse genannt wird. Die Kurve liegt dabei in einer Ebene und auch die Achse liegt in ebenderselben. Ein bekannter Rotationskörper ist der Torus. Diesen kannst du durch die Rotation eines Kreises bilden. Auch Kegel und Zylinder sind Rotationskörper. 

Volumensberechnung laut Guldinschen Regeln

Das Volumen und die Oberfläche kannst du also mit den sogenannten Guldinschen Regeln errechnen. Ein Rotationskörper entsteht durch Drehung seiner Profilfläche um seine Symmetrieachse. Während einer Drehung „erzeugt“ die Profilfläche das Volumen des Körpers. Man kann sich vorstellen, dass jedes Flächenteilchen an der Erzeugung mit einem bestimmten Anteil beteiligt ist. 

Das kleine Flächenteilchen ∆A erzeugt das Ringvolumen ∆V = 2πx ∆A. Die Summe aller Teilvolumen ist das Gesamtvolumen V. Der Summenausdruck Σ∆A x ist die Momentensumme aller Teilflächen, bezogen auf die Drehachse und damit gleich dem Moment A x0 der ganzen Profilfläche A.

Daraus ergibt sich die Guldinsche Regel für das Volumen:

Das Volumen eines Rotationskörpers ist das Produkt aus der Profilfläche und ihrem Schwerpunktsweg bei einer Umdrehung. Das Volumen eines Rotationskörpers ist somit gleich dem Produkt aus dem Flächeninhalt der erzeugenden Fläche und dem Umfang des Kreises. Diesen kannst du durch die Rotation des Schwerpunktes dieser Fläche erzeugen.

Wie berechne ich die Oberfläche laut Guldin?

Oberflächen oder Mantelflächen von Rotationskörpern entstehen durch Drehung ihrer Profillinie um die Symmetrieachse. Dabei ist jedes Längenteilchen der Profillinie mit einem bestimmten Flächenanteil beteiligt. 

Die kleine Teillänge ∆l erzeugt bei einer Drehung die Ring äche ∆A = 2πx ∆l. Die Summe aller Teilflächen ist die Mantelfläche A. Der Summenausdruck Σ∆l x ist die Momentensumme aller Teillängen, bezogen auf die Drehachse und damit gleich dem Moment der ganzen Profillinie l.

Daraus ergibt sich die Guldin’sche Oberflächenregel: 

Die Oberfläche (Mantelfläche) eines Rotationskörpers ist das Produkt aus der Länge der Profillinie und ihrem Schwerpunktsweg bei einer Umdrehung. Der Flächeninhalt A einer Mantelfläche eines Rotationskörpers, dessen Rotationsachse die erzeugende Linie nicht schneidet, ist gleich dem Produkt aus der Länge der erzeugenden Linie (Profillinie) und dem Umfang des Kreises (Schwerpunktkreis), der durch die Rotation des Schwerpunktes der Profillinie erzeugt wird.

Seilreibung – Grundverständnis und Berechnung

Von Seilreibung spricht man, wenn ein biegeweiches Seil um einen meist runden Gegenstand geschlungen wird und an den zwei Seilenden Kräfte wirken. Aufgrund der Seilreibung ist dabei eine der beiden Kräfte geringer als die andere, ohne dass es zur Bewegung des Seils kommt. Dieser Effekt der Seilreibung wird zum Beispiel beim Befestigen eines Schiffs an einem Poller ausgenutzt. Ein Schiff kann so mit relativ kleiner Kraft festgehalten werden.

Der Hauptgrund für die Entstehung von Seilreibung sind tangentiale Haftreibungskräfte an jenen Stellen, wo das Seil die Flächen des umschlungenen Körpers berührt. Stell dir ein dünnes Seil vor, welches du um einen fest stehenden zylindrischen Körper (Band, Faden) legst. Beide Seilenden belastest du mit Gewichten gleicher Masse m. Das Seil befindet sich im Gleichgewicht (Ruhezustand). 

Daran ändert sich auch dann nichts, wenn du eines der beiden Seilenden durch mehr Gewichte der Masse ∆m zusätzlich belastest und dies bis kurz vor den Rutschvorgang weitermachst. Ursache dafür ist die zwischen Seil und Mantelfläche des Zylinders wirkende Seilreibungskraft FR. Sie ist die Summe jener kleinen Reibungskräfte ∆FR = μ ∆FN, die verteilt auf der ganzen umspannten Mantelfläche wirken: FR = Σ∆FR. 

Wie berechne ich Seilreibung?

Eine Berechnungsgleichung für die größere Seilzugkraft F1 findest du wegen der verschieden großen Teil-Reibungskräfte ∆FR nur mit Hilfe der Differenzial- und Integralrechnung. Dies haben jedoch bereits s chlaue Köpfe für uns getan, zuerst Euler getan, später auch Eytelwein, nach dem auch heute noch die Gleichung F1 = F2 eμα benannt wird. 

Die Eitelwein´sche Gleichung bestätigt die Erfahrungen: Die Seilzugkraft F1 wächst (linear) mit der am anderen Seilende wirkenden Zugkraft F2 und (exponential) mit dem Produkt aus Reibungszahl μ und Umschlingungswinkel α. 

Der Umschlingungswinkel α muss mit der Einheit rad (Radiant) in die Zugkraftgleichung eingesetzt werden. Dazu dient die Umrechnungsbeziehung, wenn der Winkel in Grad vorliegt. 

Häufig wird die Anzahl der Umschlingungen (Windungen) angegeben, z. B. zwei volle Windungen.

Bei allen Seilreibungsaufgaben liegt ein Seil um einen Zylinder (System Zylinder/Seil). Zum Verständnis einer Aufgabe versetzt man sich gedanklich als „Zuseher“ auf den Zylinder und versucht von dort aus, den Richtungssinn der Seilreibungskraft FR zu bestimmen. Es ist dann gleichgültig, ob der Zylinder fest steht oder ob er sich um seine Achse dreht. 

Hast du den Richtungssinn der Seilreibungskraft FR gefunden, weißt du auch, welche der beiden Zugkräfte an den Seilenden die größere Seilkraft F1 ist. Sie ist immer der Seilreibungskraft FR entgegen gerichtet. 

 

Was ist Torsion?

Die Torsion beschreibt die Verdrehung eines Körpers, die durch die Wirkung eines Torsionsmoments entsteht. Versucht man einen Stab mit einem Hebel senkrecht zur Längsachse zu verdrehen, so wirkt auf diesen (neben einer etwaigen Querkraft) ein Torsionsmoment.

Eine Torsion tritt in Bauteilen immer dann auf, wenn Kräfte, Momente oder Kräftepaare wirken, deren Wirkungslinie nicht in der Balkenachse oder Trägheitsebene liegen.

Das Torsionsmoment T ergibt sich aus der Kraft F am Hebel multipliziert mit der Länge r des dazu verwendeten Hebels. Dies ist das Drehmoment – die Berechnung der Spannung und Verformung erfolgt in den nächsten Schritten.

Wie wirkt sich die Torsion aus?

Bei einer Torsionsbeanspruchung wird ein Bauteil (Stab oder Welle) mit einem Moment (Drehmoment/Torsionsmoment) belastet, das um die Längsachse wirkt. Das kommt meistens bei kreisförmigen Bauteilen vor, da diese sehr gut geeignet sind, um große Drehmomente zu übertragen. Durch die Einwirkung des Torsionsmoments verformen sich die Linien schraubenförmig, die parallel zur Längsachse auf dem Mantel des Bauteils sind. 

Ausschließlich für Kreis- und für geschlossene Kreisringquerschnitte ist das Torsionsträgheitsmoment gleich dem polaren Flächenträgheitsmoment Ip

Für andere Querschnitte ist die Berechnung des Torsionsträgheitsmoments nur in besonderen Fällen in geschlossener Form möglich.

Zudem ist bei der Bestimmung des Torsionsträgheitsmoments oft von Bedeutung, ob es sich um verwölbungsfreie Querschnitte handelt oder nicht, und ob die Verwölbung behindert wird oder nicht.

Da die durch Torsion verursachten Schubspannungen in der Mitte eines Querschnitts geringer sind als zum Rand hin, ist es nach den Prinzipien des Leichtbaus sinnvoll, mehr Material an den Rand eines Querschnitts zu legen. Dieses Prinzip wird bei der Drehmomentübertragung durch Wellen in Form der Hohlwelle angewandt.

Bei dünnwandigen Querschnitten spielt es eine große Rolle, ob der Querschnitt geschlossen oder offen ist. Geschlossene Querschnitte sind deutlich widerstandsfähiger gegenüber Torsion als offene Querschnitte. Betrachtet man den geschlossenen Querschnitt eines Rundrohrs, dessen Wandstärke 10 % seines Radius beträgt, und vergleicht ihn mit einem geschlitzten Querschnitt mit ansonsten gleichen Eigenschaften. So sind Torsionsträgheitsmoment und folglich das für einen bestimmten Verdrehwinkel aufzubringende Moment beim geschlossenen Querschnitt um den Faktor 300 größer.

Was ist Steifigkeit?

Die Steifigkeit ist eine Größe in der Technischen Mechanik. Sie beschreibt den Widerstand eines Körpers gegen elastische Verformung durch eine Kraft oder ein Moment (Biegemoment oder Torsionsmoment).