Die Ganzen Zahlen
Die „Ganzen Zahlen“ (auch Ganzzahlen) sind eine Erweiterung der natürlichen Zahlen. Diese Menge an Zahlen umfassen alle Zahlen …, −3, −2, −1, 0, 1, 2, 3, … und enthalten damit alle natürlichen Zahlen sowie deren additive Inverse (Gegenzahl). Die Menge dieser Zahlen wird meist mit dem Buchstaben mit Doppelstrich Z bezeichnet.
In der Mathematik werden durch die Begriffe Nachfolger und Vorgänger die gedanklichen Konzepte der Abstammung oder Amtsnachfolge und des Zählens formalisiert und verallgemeinert.
Was ist ein Nachfolger bei den „ganzen Zahlen“?
Beim Zählen ist der Nachfolger einer ganzen Zahl intuitiv die nächstgrößere Zahl: So ist etwa 2 der Nachfolger von 1, 3 der Nachfolger von 2 usw. Beim Abwärtszählen kommt man von 9 zu ihrem Vorgänger 8 usw. Diese an sich naive Entdeckung, die Kinder immer wieder im Spiel nachvollziehen, kann man zu einer mathematischen Charakterisierung der natürlichen Zahlen formalisieren.
Beim Aufwärts- und Abwärtszählen stellt man fest, dass es auf die Bedeutung der Zahlwörter gar nicht ankommt, sondern nur auf ihre Reihenfolge. Diese Feststellung lässt eine Verallgemeinerung der Zählnachbarn Vorgänger und Nachfolger auf Graphen und geordnete Mengen zu
Der Betrag einer Zahl ergibt sich als der Abstand der Zahl auf dem Zahlenstrahl von der Null. Man erhält ihn durch Weglassen des Vorzeichens
Wie lauten die Rechengesetze?
Das →Kommutativgesetz der Addition besagt, dass sich das Ergebnis einer Addition nicht ändert, wenn man die Reihenfolge der Summanden vertauscht. Summanden darf man vertauschen!
Das Kommutativgesetz der Multiplikation besagt, dass sich das Ergebnis einer Multiplikation nicht ändert, wenn man die Reihenfolge der Faktoren vertauscht. Faktoren darf man vertauschen!
Das →Assoziativgesetz, auf Deutsch Verknüpfungsgesetz oder auch Verbindungsgesetz, ist eine Regel aus der Mathematik. Eine Verknüpfung ist assoziativ, wenn die Reihenfolge der Ausführung keine Rolle spielt. Anders gesagt: Die Klammerung mehrerer assoziativer Verknüpfungen ist beliebig.
Das →Distributivgesetz ist im Grunde ein Gesetz zum Ausmultiplizieren von Klammern. Das bedeutet, man hat ein Produkt (oder Quotienten) aus einer Zahl und einer Klammer – oder auch aus zwei Klammern. In diesen Klammern stehen Summen oder Differenzen.