Rationale Exponenten- Hochzahl als Bruchzahl

Rationale Exponenten sind also Exponenten aus der Menge der Rationalen Zahlen. In der Mathematik kann man Produkte aus gleichen Faktoren als Potenzen schreiben. Allgemein wird eine Potenz mit an beschrieben. Das a wird dabei als Basis bezeichnet, das n ist der Exponent – oft auch Hochzahl genannt.

Was ist ein natürlicher Exponent?

Potenzen mit natürlichem Exponenten. Wir potenzieren eine Zahl mit natürlichen Zahlen, also ganzen, positiven Zahlen, wobei wir die Null auch zulassen wollen. Die Zahl nennen wir allgemein a und den Exponenten n (weil er eine natürlich Zahl ist).

Wenn man eine Gleichung mit einem Exponenten in der Form x=5³ hat, braucht man nur 5 · 5 ·5 ausrechnen und erhält den Wert für x. 2. Bei einer Gleichung wie x³=125 zieht man auf beiden Seiten der Gleichung die Wurzel, bzw. wie in diesem Fall die 3.

Eine Potenz (von lateinisch potentia ‚Vermögen, Macht‘) ist das Ergebnis des Potenzierens (der Exponentiation), das wie das Multiplizieren seinem Ursprung nach eine abkürzende Schreibweise für eine wiederholte mathematische Rechenoperation ist. Wie beim Multiplizieren ein Summand wiederholt zu sich selbst addiert wird, so wird beim Potenzieren ein Faktor wiederholt mit sich selbst multipliziert. Dabei heißt die Zahl, die zu multiplizieren ist, Basis. Wie oft diese Basis als Faktor auftritt, wird durch den Exponenten angegeben.

Was sind Rationale Exponenten?

Der Wert der Potenz hängt nicht davon ab, welche Bruchdarstellung man gewählt hat. Wenn man Wurzeln aus negativen Zahlen mit ungeraden Wurzelexponenten zulässt, dann kann man diese Definition auf negative Basen und solche rationale Exponenten erweitern, deren gekürzte Bruchdarstellungen ungerade Nenner haben. Dazu gehören auch Potenzen mit negativen Basen und ganzen Exponenten, weil die Nenner in diesem Fall gleich 1 sind.

Rationale Exponenten sind also Exponenten aus der Menge der →Rationalen Zahlen „Q“ .

Die Hochzahlen sind also Brüche. ¼ ist demnach der rationale Exponent bei x1/4.

Du kannst alle →Rechenregeln für Potenzen auch auf Wurzeln anwenden. Dazu gehören natürlich die Potenzregeln, aber später zum Beispiel auch manche Ableitungsregel.

Die Potenzen mit rationalem Exponenten sind also nur eine andere Schreibweise für Wurzelausdrücke. Das kann gerade an Computern oft hilfreich sein, da ein Wurzelzeichen nicht immer zu finden ist.

 

Du musst angemeldet sein, um einen Kommentar abzugeben

Cookie Consent mit Real Cookie Banner