Wie berechne ich das Biegemoment?

Biegung bezeichnet in der technischen Mechanik eine mechanische Veränderung der Geometrie von schlanken Bauteilen (Balken oder Bögen) oder von dünnen Bauteilen. Kräfte verursachen die Biegung, diese Kräfte bewirken wiederum ein Biegemoment.

Typisch für Biegung sind Krümmungsänderungen der Mittellinie oder -fläche gegenüber der Krümmung, die das Bauteil im unbeanspruchten Zustand hatte, durch statische und dynamische Beanspruchungen. Derartige Krümmungen führen zu Biegemomenten und somit zu Biegespannungen. In der technischen Mechanik betrachtet man vor allem schlanke Bauteile bei der Biegung. Die Bauteile werden durch eine von außen einwirkende Kraft gekrümmt und es werden dabei zwei Arten von Biegungen unterschieden. 

  1. Bei der gerade Biegung, wirkt die Kraft, die die Biegung verursacht, in Richtung einer der Hauptträgheitsachsen des betrachteten Querschnitts
  2. Bei der schiefen Biegung wirkt die Kraft in eine andere Richtung als die Hauptträgheitsachsen eines Querschnitts

Je nach dem wo die angreifende Kraft, die eine Krümmung an einem Bauteil verursacht, wirkt, erzeugt sie im oberen Teil des Bauteils eine Zugspannung und im unteren einen Druck. Die Belastung durch die Kräfte ist dabei in den Randgebieten des Bauteiles – in den äußeren Randfasern – deutlich höher als innen im Bauteil. Denn an der Stelle, an der sich Druck- und Zugkraft gegenseitig kompensieren, befindet sich die sogenannte neutrale Faser. Durch die Kompensation der beiden Kräfte ist sie spannungsfrei.

Was ist das Biegemoment?

Das Biegemoment ist wie der Name schon sagt das Moment, das einen Körper verbiegt. Das Biegemoment Mb ist für die Biegung von schlanken Körpern verantwortlich. Es löst innere Kräfte in einem Element aus, die über den Querschnitt und die Länge des Bauteiles verteilt sind. Ein Biegemoment entsteht durch eine senkrecht zur Längsachse des Körpers wirkende Querkraft F oder Streckenlast.

Was ist die Biegespannung?

Die Biegespannung ist in einem Querschnitt in y-Richtung linear veränderlich. Diese nimmt an den Rändern des Querschnitts die größten Werte an. Wobei jeweils ein Wert positiv (Zugspannung), der andere negativ (Druckspannung) ist. Biegespannungen sind Zug- und Schubspannungen, die bei der Biegung eines Stabes oder einer Platte aufteten. Biegespannungen lassen sich am Beispiel des einseitig eingespannten Balkens verdeutlichen 

Durch eine Kraft wird bei der Verbiegung ein Balken mit der ursprünglichen Länge L auf der Oberseite verlängert, auf der Unterseite gestaucht, folglich wirken an der Oberseite Zugspannungen σZ, an der Unterseite Schubspannungen σS. In der Mitte des Balkens gibt es einen Übergangsbereich, eine spannungsfreie Zone, die ihre Länge bei der Biegung nicht ändert. Die Biegespannungen in den einzelnen Schichten wachsen proportional zum Abstand von dieser neutralen Faser an, wenn das lineare Elastizitätsgesetz gilt (Hookesches Gesetz).