Was sind Nullstellen einer Funktion?

Mit Nullstellen bezeichnet man die Stellen auf der x-Achse, an der der Funktionsgraph die x-Achse schneidet. Da der Punkt direkt auf der x-Achse liegt und die x-Achse die y-Achse im Koordinatenursprung schneidet, ist der zugehörige y-Wert gleich Null, also y = 0.

Wir wollen einen Punkt auf der x-Achse ausrechnen, den y-Wert haben wir schon, der ist schließlich Null, aber der x-Wert fehlt uns noch. Deshalb stellen wir die Funktion nach x um.

Die Nullstelle ist ein Begriff aus dem Bereich der Mathematik, der sich mit Funktionen und ihren Verläufen und Eigenschaften befasst. Dabei versteht man unter Nullstellen die x-Werte, die eingesetzt in eine Funktion f den Funktionswert Null liefern. Wie viele Nullstellen es gibt hängt von der jeweiligen Funktion, dem Grad des höchsten Polynoms ab.

Welche Zuordnung gilt bei Funktionen?

Für die Zuordnung eines Funktionswertes y zu einem Argument x gibt es eine Reihe verschiedener Sprech- oder ausführlicher Schreibweisen, die alle mehr oder weniger gleichwertig sind und vor allem in Abhängigkeit von dem, was vordergründig ausgedrückt werden soll, vom jeweiligen Kontext, der benutzten Symbolik und auch vom Geschmack des Sprechers (Schreibers) gewählt werden. Hier einige Beispiele:
x wird abgebildet auf f von x
f von x wird x eindeutig zugeordnet (vornehmlich, wenn das ↦-Symbol in der Symbolik steht)
y gleich f von x (vornehmlich, wenn ein Gleichheitszeichen in der Symbolik steht)
y ist das Bild von x unter der Abbildung f

Davon zu unterscheiden ist die Sprech- und Schreibweise: „y ist eine Funktion von x“, die vor allem in der Physik sehr nahestehenden Bereichen der Mathematik auftaucht. Sie ist die ältere und ursprüngliche Sprech- und Schreibweise und beschreibt die Abhängigkeit einer Variablen y von einer anderen Variablen x, im Gegensatz dazu, dass mit Hilfe der Variablen
x und y die Zuordnung bestimmter Elemente von Mengen beschrieben wird.

Nullstellen sind Argumente

Nullstellen von Funktionen sind Argumente („x-Werte“), die eingesetzt den Funktionswert („y-Wert“) null liefern. Der Wortbestandteil „Stelle“ deutet dabei an, dass es sich um Elemente des Definitionsbereiches handelt. Bei reellen Funktionen sind das genau die Stellen der x-Achse, an denen der Graph einer Funktion f die x-Achse berührt oder schneidet. Nullstellen von →Polynomen werden auch als Wurzeln bezeichnet.

Untersucht man ein Intervall einer differenzierbaren Funktion f, so gelten folgende vier Zusammenhänge: Gilt für alle Werte des Intervalls I …
• … dass f'(x) immer größer 0 ist, dann ist die Funktion streng monoton steigend.
• … dass f'(x) immer kleiner 0 ist, dann ist die Funktion streng monoton fallend.
Da die erste Ableitung der Funktion f'(x) bekanntlich die Steigung der Funktion f(x) an der Stelle x liefert, ist nachvollziehbar, dass bei →positiver Steigung die Funktionswerte ebenfalls steigen müssen und bei negativer Steigung die Funktionswerte fallen müssen.

Was ist eine Reelle Zahlenfolge?

Eine Zahlenfolge ist eine Funktion (f). Man ordnet einer Zahl, die Element der natürlichen Zahlen (ohne Null) ist, einem Wert aus den reellen Zahlen zu. Die natürliche Zahl, der man einem Wert zuordnet, heißt n (Nummer, vergleichbar mit dem x-Wert bei anderen Funktionen, man fängt in aller Regel mit 1 an und nicht mit 0). Der Wert (n-tes Folgeglied) heißt an. Das heißt, statt a1, a2, a3 usw. zu schreiben, fasst man es kurz zu an zusammen.

Zahlenfolgen sind dann arithmetisch, wenn bei den aufeinander folgenden Gliedern die Differenz immer gleich ist (a2 – a1 = a3 – a2 = a4 – a3 = d). Die Differenz wird mit d bezeichnet. a1 bezeichnet das erste Glied.

Beispiel einer arithmetischen Zahlenfolge

3, 8, 13, 18, 23, …
Es gibt nun zwei Möglichkeiten, eine Bildungsvorschrift zu gewinnen. Entweder benutzt man die Möglichkeit, eine rekursive Bildungsvorschrift aufzustellen oder man stellt eine explizite Bildungsvorschrift auf. Bei der rekursiven Bildungsvorschrift gewinnt man immer aus dem vorherigen Glied der Zahlenfolge das nächste Glied und bei der expliziten Bildungsvorschrift kann man durch Einsetzen in die Formel direkt das n-te Glied berechnen. Die explizite Bildungsvorschrift ist sicher von Vorteil, aber beide Möglichkeiten sind erlaubt.

Was sind Zahlenfolgen?

Eine Funktion, deren Definitionsbereich die Menge der natürlichen Zahlen (oder eine Teilmenge davon) ist und die eine Teilmenge der reellen Zahlen als Wertebereich besitzt, wird (reelle) Zahlenfolge genannt. Unter der n-ten Partialsumme einer Zahlenfolge
versteht man die Summe der Folgenglieder.

Unter einer Zahlenfolge versteht man eine Menge von (reellen) Zahlen, die so geordnet ist, dass feststeht, welches die erste, zweite, dritte, … Zahl ist.

Bei Zahlenfolgen sind alle Glieder eindeutig den natürlichen Zahlen zugeordnet. Damit ist eine Zahlenfolge eine Funktion, deren Definitionsbereich die Menge der natürlichen Zahlen ist und deren Wertebereich eine Teilmenge der reellen Zahlen ist.

Eine Zahlenfolge heißt endlich, wenn sie nur endlich viele Glieder besitzt. Wesentlich interessanter sind aber unendliche Zahlenfolgen, bei denen durch ein Bildungsgesetz – eine Formel oder auch eine verbale Vorschrift – angegeben ist, wie man die Glieder der Folge erhält.