Vergleichsmoment & Vergleichsspannung

Vergleichsmoment

Um zusammengesetzte Beanspruchungen in einem Bauteil berechnen zu können, musst du Vergleichsspannung und Vergleichsmoment berücksichtigen. Beanspruchungen wie Zug (Normalspannung σ), Druck (Normalspannung σ),  →Biegung (Normalspannung σ) oder Torsion (Tangentialspannung τ) sind bereits bekannt. Wenn mehrere Beanspruchungen gleichzeitig auftreten kannst du bei Zug/Druck oder Biegung die Spannungen addieren, da es sich um Normalspannungen handelt. Bei Schub- und Torsionspannungen geht das ebenfalls.

Warum Vergleichsmoment? 

Bei Biegung und gleichzeitiger →Torsion kannst du aber nicht die Spannungen einfach addieren. Die Biegung ist eine Normalspannung und wirkt normal (orthogonal) auf den Querschnitt. Die Torsion (Tangentialspannung) andererseits wirkt in axialer Richtung im Querschnitt. Eine einfache Addition (Superpositionsprinzip) ist deshalb nicht möglich. Somit musst du eine Vergleichsspannung berechnen.

Warum braucht man Vergleichsspannungen?

Da beide Spannungen rechtwinkelig aufeinander stehen, könnte man ja meinen, dass wir mit Hilfe des Pythagoras eine resultierende Spannung berechnen könnten. Das funktioniert aber schon allein aus der verschiedenartigen Werkstoffreaktion auf die unterschiedlichen Spannungen nicht.

Schön zuerkennen ist dies an den unterschiedlichen Modulen. Während du bei der Normalspannung das Elastizitätsmodul E für Stahl mit ca. 210000 N/mm² aus Tabellen herausliest, nimmst du bei der Schubspannung das Schubmodul G für Stahl mit 81000 N/mm² an.

Um diese Unterschied in  deiner Berechnung optimal zu berücksichtigen, musst du mit einer idealisierten Vergleichsspannung arbeiten. Diese wurde aus der Hypothese der größten Gestaltänderungsenergie ermittelt, da diese Versuche sehr gut übereinstimmen. Deswegen wird sie auch Gestaltsänderungshypothese genannt. Bei den Versuchen wurde festgestellt, dass Tangentialspannungen das Bauteil deutlich höher beanspruchen als Normalspannungen.

Prinzipiell versuchen alle Festigkeitshypothesen darauf abzuzielen, mit einer Vergleichsspannung die zusammengesetzte Wirkung der einzelnen Spannungen auf das Bauteil zu ermitteln.

Die geometrische Addition der einfließenden Spannungen ist bei der Betrachtung der Formel durchaus erkennbar. 

Lediglich einen betriebsabhängigen Faktor, das sogenannte Anstrengungsverhältnis α0, musst du in der Formel berücksichtigen.

Was ist ein Anstrengungsverhältnis?

Das Anstrengungsverhältnis berücksichtigt die Kombination verschiedener Lastfälle im System, die auftreten können

Für Wellen aus Stahl ist dieses näherungsweise bekannt.

α0 ≈ 0,7 bei Biegung, wechselnd wirkend und Torsion ruhend (schwellend) Standardfall für Wellen

α0 ≈ 1,0 bei Biegung, wechselnd wirkend und Torsion wechselnd

α0 ≈ 1,5 bei Biegung, ruhend (schwellend) wirkend und Torsion wechselnd

 

Cookie Consent mit Real Cookie Banner