Wahrscheinlichkeitsrechnung Grundlagen – Laplace Experiment
Von einem Zufallsexperiment spricht man, wenn es sich um einen Vorgang handelt, bei dem mindestens zwei Ergebnisse möglich sind. Dabei darf man vor Ablauf des Vorgangs das Ergebnis nicht vorhersehen können. Als Beispiel könntest du dir folgendes vorstellen: Du wirfst einen fairen Würfel. Auf welcher Seite er landet, kannst du vor dem Verlassen des Würfels aus deiner Hand nicht vorhersagen. Dieses Zufallsexperiment gehört somit zum Gebiet der Wahrscheinlichkeitsrechnung.
Unter einem Laplace Experiment versteht man ein Zufallsexperiment, bei dem alle Möglichkeiten des Versuchsausgangs die gleiche Wahrscheinlichkeit aufweisen. Man spricht hier oftmals von „gleichwahrscheinlich“.
Woran erkennst du nun, ob es sich um einen Laplace Versuch handelt oder nicht? Die Frage ist oftmals nicht ganz so einfach zu beantworten und erfordert in vielen Fällen Vorkenntnisse auf dem entsprechenden Gebiet. Es folgen ein paar Beispiele:
- Ein normaler Würfel hat sechs Seiten. Sofern an dem Würfel nichts manipuliert wurde, handelt es sich um einen fairen Würfel. Die Wahrscheinlichkeit, dass du die Zahl 1 würfelst, ist dann genauso groß, wie die Wahrscheinlichkeit, dass du die Zahl 6 würfelst. Es handelt sich somit um ein Laplace Experiment (Versuch).
- Eine Münze hat zwei Seiten: Kopf und Zahl. Bei einer nicht manipulierten Münze (faire Münze) ist es für dich gleich wahrscheinlich „Zahl“ oder „Kopf“ zu werfen. Somit handelt es sich ebenfalls um einen Laplace Versuch.
- Bei einem Pferderennen treten 10 Reiter samt Pferde gegeneinander an. Da sich die Fähigkeiten der Teilnehmer voneinander unterschieden, ist die Chance auf einen Sieg bei jedem Teilnehmer verschieden. Somit hast du hier kein Laplace Experiment. (unterschiedliche Wahrscheinlichkeit)
Du solltest versuchen solche Aufgaben mit etwas gesundem Menschenverstand anzugehen. Hast du keinen Grund, das Eintreten irgendeines der Ergebnisse eines Zufallsexperiments für wahrscheinlicher als das der anderen Ergebnisse zu halten, so kannst du erst einmal von einem Laplace Experiment ausgehen. (gleiche Wahrscheinlichkeit bei allen Versuchen)
Ein Zufallsexperiment ist ein Vorgang, bei dem mindestens zwei Ergebnisse möglich sind und bei dem man vor Ablauf des Vorgangs das Ergebnis nicht vorhersehen kann. Auf welcher Seite ein Würfel landet, magst du nicht vorhersagen.
Zufallsexperiment in der Wahrscheinlichkeitsrechnung?
Unter einem einstufigen Zufallsexperiment der Wahrscheinlichkeitsrechnung versteht man ein Zufallsexperiment, welches nur ein einziges Mal durchgeführt wird.
- Du wirfst einen Würfel einmal
- oder du wirfst eine Münze einmal
In den meisten Fällen ist es notwendig, einen Versuch mehrfach durchzuführen. So könntest du beim Wurf eines Würfels die Zahl 4 würfeln. Doch nach einem Versuch könntest du dann glauben, dass du bei einem Würfel immer die Zahl 4 werfen wirst. Aus diesem Grund sind einstufige Zufallsexperimente in den meisten Fällen nicht aussagekräftig.
Von einem mehrstufigen Zufallsexperiment sprich man, wenn ein zufälliger Vorgang mehrfach nacheinander durchgeführt wird. Beispiel: Wirf einen Würfel mehrfach hintereinander. Besteht ein mehrstufiger Zufallsversuch aus k – Teilversuchen, so handelt es sich um ein k-stufigen Zufallsexperiment. Der Ausgang eines Zufallsexperimentes kann dabei Ergebnis genannt werden. Die Ergebnismenge enthält alle möglichen Ergebnisse eines Zufallsexperimentes.
Das Gegenereignis wird mit einem Strich über dem E dargestellt. Nimmst du die Wahrscheinlichkeit von Ereignis und Gegenereignis zusammen, ergibt dies in Summe 1 (oder 100 %). Kennst du das Ereignis kannst du damit das Gegenereignis ausrechnen und umgekehrt.