Hochpunkt- Tiefpunkt – Extremwert – Extremstelle

Extremstelle

In der Mathematik ist ein Extremwert der Oberbegriff für ein lokales oder globales Maximum oder Minimum. Ein lokales Maximum oder Minimum ist der Wert der Funktion an einer beliebigen Stelle x, wenn in einer hinreichend kleinen lokalen Umgebung die Funktion f(x) keine größeren oder kleineren Werte annimmt

Was ist eine Extremstelle?

Die zugehörige Stelle wird lokale Maximalstelle (Hochpunkt) bzw. Minimalstelle (Tiefpunkt) genannt. Allgemein kannst du alle Maxima und Minima auch als Extremstellen und die Kombination aus Stelle x und Wert f(x) als Extrempunkt bezeichnen. Alle Extrempunkte haben daher eine X- und eine Y-Koordinate. Die Extremstellen aber lediglich eine X-Koordinate

Ein globales Maximum wird auch absolutes Maximum genannt. Für ein lokales Maximum wird auch der Begriff relatives Maximum gebraucht. Lokale und globale Minima sind analog dazu gleich definiert.

Vereinfacht kannst du die Extremwerte einer Funktion in zwei Schritten bestimmen:

  1. Die erste Ableitung der Funktion wird null gesetzt (notwendige Bedingung). Dadurch erhältst du alle Stellen der waagerechten Tangenten der Funktion.
  2. Mithilfe der zweiten Ableitung ermittelst du noch das Krümmungsverhalten an diesen Stellen und überprüfst die hinreichende Bedingung für einen Extremwert. Als hinreichende Bedingung gilt, dass die zweite Ableitung nicht 0 ist.

In einigen wenigen Fällen versagt dieses einfache Verfahren jedoch. Wenn nämlich die zweite Ableitung Null ist. Du könntest dann noch die dritte Ableitung prüfen, wenn diese nicht Null ist, handelt es sich wahrscheinlich um einen Sattelpunkt.

Es gibt einen Sonderfall

Für den Fall, das auch die dritte Ableitung verschwindet, gilt folgendes:

Besitz die Funktion eine waagerechte Tangente bei xo, dann ist die nächste nicht verschwindende Ableitung die sogenannte n-te Ableitung. Wenn die n-te Ableitung eine gerade Ordnung besitzt und beim Einsetzen der Extremstelle x0 in die n-te Ableitung ein Wert größer 0 herauskommt, handelt es sich um eine Minimumstelle. Bei einem Wert kleiner 0, um eine Maximumstelle. 

Ist die Ordnung n jedoch ungerade, handelt es sich an der Stelle x0 um einen Sattelpunkt.

Klingt alles ein bisschen verwirrend, aber diese Konstellation kommt jedoch sehr selten vor. Es reicht meistens, die vereinfachten zwei Schritte auszuführen.

Wie löst man eine Extremwertaufgabe

Extremwertaufgabe

Bei einer Extremwertaufgabe ist der kleinste oder der größte Wert einer Funktion f(x) zu bestimmen. Es wird also ein Maximal- oder Minimalwert gesucht. Dies ist vor allem bei Berechnungen für maximale Kosten, Material, Volumen, Flächen etc. von großer Bedeutung.

Problemaufgaben dieser Art werden gelöst, indem man zunächst die im Inneren eines vorgegebenen Intervalls liegenden relative Extremwerte mithilfe der Differentialrechnung ermittelt. Bei einem offenen Intervall muss der kleinste bzw. größte Wert lediglich im Inneren des Intervalls liegen. Dadurch ergibt sich automatisch ein relativer Extremwert.

Was ist eine Zielfunktion?

Jene Funktion deren absolutes Maximum oder Minimum im Intervall bestimmt werden soll, bezeichnet man als Zielfunktion.

Diese Zielfunktion ist am Anfang der Lösungsfindung selbstverständlich unbekannt und du musst sie dementsprechend aufgestellen.

Beim Aufstellen der Zielfunktion sollte immer überlegt werden, welches Maximum bzw. Minimum gefordert ist. Ist beispielsweise ein maximales Volumen gefordert, stellst du eine Funktion (Formel) zur Berechnung des Volumens auf. Diese entstehende Zielfunktion ist oft von mehr als einer Variable abhängig.  

Diese Variablen sind jedoch nicht unabhängig voneinander. Sie sind durch Nebenbedingungen miteinander verbunden. Durch Verwendung von elementar geometrischen Lehrsätzen (Strahlensätze, Satz des Pythagoras, Höhensatz etc.) können die Nebenbedingungen mathematisch dargestellt werden. 

Wie löse ich eine Extremwertaufgabe?

Die Zielfunktion bildest du so um, dass lediglich  eine Unbekannten mehr existiert. Durch geschicktes Umformen nach einer Variable und Einsetzen der Nebenbedingung(en) in die Zielfunktion ist dies einfach erreichbar.

Mithilfe der Nebenbedingungen lässt sich dann die Zielfunktion so darstellen, dass sie nur mehr von einer Variable abhängig ist.

Die Zielfunktion differenzierst (ableiten) du im Anschluss nach dieser einen Variable. Die differenzierte Zielfunktion setzt du Null und ermittelst den Maximal- oder Minimalwert.

Zur Überprüfung solltest du auch die zweite Ableitung bilden und die Extrema auf Maximum bzw. Minimum überprüfen. Um zu verhindern, dass du ein falsches Ergebnis berechnet hast, solltest du diese Werte mit dem Randwerten des Intervalls vergleichen.

Mithilfe der Differentialrechnung können lediglich relative Extremwerte mit waagerechter Tangente berechnet werden. Trifft dies nicht zu handelt es sich um einen sogenannten Sonderfall eines Randextremwertes.

Extremwertaufgabe lösen – Vorgehensweise

  1. Bestimme die Zielfunktion. Bilde zu dem Sachverhalt, den du maximieren oder minimieren möchtest, die passende Funktion.
  2. Nebenbedingung aufstellen
  3. Nebenbedingung nach einer Variable umformen
  4. Variable in Zielfunktion einsetzen
  5. Extremwert berechnen (1. Ableitung bilden und Null setzen)
  6. Zweite Variable bestimmen

Kreisbogen und Radius eines Kreissegments

Ein Kreissektor ist ein Tortenstück eines Kreises. Dieser Teilbereich wird zweimal durch den Kreisradius und einem Kreisbogen b begrenzt. Die Fläche eines Kreissegment berechnest du, indem du vom Flächeninhalt des vorhandenen Kreissektors den Flächeninhalt des Dreiecks abziehst. Der Teil, der zu einem Kreissektor als sichtbare Kreislinie zu sehen ist, wird als Kreisbogen bezeichnet. Der Winkel zwischen den beiden Radien wird als Mittelpunktswinkel bezeichnet. Du kannst diesen sehr oft mithilfe der Trigonometrie berechnen. Der Anteil des Kreisbogens am gesamten Umfang entspricht dem Anteil des Winkels an 360° (gesamter Kreis).

Was ist ein Kreissegment?

Ein Kreissegment oder Kreisabschnitt ist in der Geometrie jene Teilfläche einer Kreisfläche, die von einem Kreisbogen und der sogenannten Kreissehne begrenzt. Im Gegensatz dazu begrenzt der Kreisbogen und zwei Kreisradien den Kreissektor.

Der Zentriwinkel (Mittelpunktswinkel) α hat seinen Scheitel im Kreismittelpunkt. Beträgt der Zentriwinkel α = 90° hast du ein gleichschenklig-rechtwinkliges Dreieck. Ein gleichschenklig rechtwinkliges Dreieck ist ein halbes Quadrat, du hast dann auch einen Viertelkreis als Kreissektor.

Den Flächeninhalt eines Kreissegments kannst du aus dem Kreisradius r und dem zugehörigen Mittelpunktswinkel α berechnen. Du berechnest dazu den Flächeninhalt des entsprechenden Kreissektors und des in des gleichschenkligen Dreiecks. Ist der Mittelpunktswinkel kleiner als 180°, muss du diese Flächeninhalte subtrahieren (Sektorfläche minus Dreiecksfläche). Bei einem Mittelpunktswinkel über 180° addierst du die Flächeninhalte. Wenn der Zentriwinkel genau 180° ist, ergibt sich für das Kreissegment Halbkreisfläche, und die Fläche des Dreiecks ist 0.

Was ist der Kreisbogen?

Nimmst du auf einem Kreis zwei beliebige Punkte und verbindest diese miteinander und verbindest die Punkte ebenfalls durch Strecken mit dem Mittelpunkt des Kreises entsteht der Kreissektor. Ein Kreisausschnitt wird also rechts und links vom Radius und oben von einem teil des Umfanges des Kreises begrenzt. Dieser zu einem Kreissektor gehörende Teil der Kreislinie wird als Kreisbogen bezeichnet.

Was sind Sehne und die Höhe eines Segmentes?

Die Strecke zwischen deine zwei gewählten Punkten bezeichnet man als Sehne. Diese Sehen s ergibt sich, wenn du eben die zwei Radien einzeichnest und die Schnittpunkte mit der Kreislinie verbindest. Die Formel zur Berechnung der Länge der Sehne lautet s = 2·r·sin(α/2) , wobei α der Zentriwinkel zwischen den Radien ist.

Die Segmenthöhe wird auch Sagitta genannt. Die dazugehörigen Formeln mit denen du die Höhe h berechnest, kannst du mithilfe des →Satzes von Pythagoras herleiten. Denn die Strecke der Differenz von Radius r und Segmenthöhe h bildet mit der halben Kreissehne s ein rechtwinkliges Dreieck mit dem Radius r als Hypotenuse in diesem Dreieck.

Wahrscheinlichkeitsrechnung Grundlagen – Laplace Experiment

Von einem Zufallsexperiment spricht man, wenn es sich um einen Vorgang handelt, bei dem mindestens zwei Ergebnisse möglich sind. Dabei darf man vor Ablauf des Vorgangs das Ergebnis nicht vorhersehen können. Als Beispiel könntest du dir folgendes vorstellen: Du wirfst einen fairen Würfel. Auf welcher Seite er landet, kannst du vor dem Verlassen des Würfels aus deiner Hand nicht  vorhersagen. Dieses Zufallsexperiment gehört somit zum Gebiet der Wahrscheinlichkeitsrechnung.

Unter einem Laplace Experiment versteht man ein Zufallsexperiment, bei dem alle Möglichkeiten des Versuchsausgangs die gleiche Wahrscheinlichkeit aufweisen. Man spricht hier oftmals von „gleichwahrscheinlich“.

Woran erkennst du nun, ob es sich um einen Laplace Versuch handelt oder nicht? Die Frage ist oftmals nicht ganz so einfach zu beantworten und erfordert in vielen Fällen Vorkenntnisse auf dem entsprechenden Gebiet. Es folgen ein paar Beispiele:

  • Ein normaler Würfel hat sechs Seiten. Sofern an dem Würfel nichts manipuliert wurde, handelt es sich um einen fairen Würfel. Die Wahrscheinlichkeit, dass du die Zahl 1 würfelst, ist dann genauso groß, wie die Wahrscheinlichkeit, dass du die Zahl 6 würfelst. Es handelt sich somit um ein Laplace Experiment (Versuch).
  • Eine Münze hat zwei Seiten: Kopf und Zahl. Bei einer nicht manipulierten Münze (faire Münze) ist es für dich gleich wahrscheinlich „Zahl“ oder „Kopf“ zu werfen. Somit handelt es sich ebenfalls um einen Laplace Versuch.
  • Bei einem Pferderennen treten 10 Reiter samt Pferde gegeneinander an. Da sich die Fähigkeiten der Teilnehmer voneinander unterschieden, ist die Chance auf einen Sieg bei jedem Teilnehmer verschieden. Somit hast du hier kein Laplace Experiment. (unterschiedliche Wahrscheinlichkeit)

Du solltest versuchen solche Aufgaben mit etwas gesundem Menschenverstand anzugehen. Hast du keinen Grund, das Eintreten irgendeines der Ergebnisse eines Zufallsexperiments für wahrscheinlicher als das der anderen Ergebnisse zu halten, so kannst du erst einmal von einem Laplace Experiment ausgehen. (gleiche Wahrscheinlichkeit bei allen Versuchen)

Ein Zufallsexperiment ist ein Vorgang, bei dem mindestens zwei Ergebnisse möglich sind und bei dem man vor Ablauf des Vorgangs das Ergebnis nicht vorhersehen kann. Auf welcher Seite ein Würfel landet, magst du nicht vorhersagen.

Zufallsexperiment in der Wahrscheinlichkeitsrechnung?

Unter einem einstufigen Zufallsexperiment der Wahrscheinlichkeitsrechnung versteht man ein Zufallsexperiment, welches nur ein einziges Mal durchgeführt wird.

  • Du wirfst einen Würfel einmal
  • oder du wirfst eine Münze einmal

In den meisten Fällen ist es notwendig, einen Versuch mehrfach durchzuführen. So könntest du beim Wurf eines Würfels die Zahl 4 würfeln. Doch nach einem Versuch könntest du dann glauben, dass du bei einem Würfel immer die Zahl 4 werfen wirst. Aus diesem Grund sind einstufige Zufallsexperimente in den meisten Fällen nicht aussagekräftig.

Von einem mehrstufigen Zufallsexperiment sprich man, wenn ein zufälliger Vorgang mehrfach nacheinander durchgeführt wird. Beispiel: Wirf einen Würfel mehrfach hintereinander. Besteht ein mehrstufiger Zufallsversuch aus k – Teilversuchen, so handelt es sich um ein k-stufigen Zufallsexperiment. Der Ausgang eines Zufallsexperimentes kann dabei Ergebnis genannt werden. Die Ergebnismenge enthält alle möglichen Ergebnisse eines Zufallsexperimentes.

Das Gegenereignis wird mit einem Strich über dem E dargestellt. Nimmst du die Wahrscheinlichkeit von Ereignis und Gegenereignis zusammen, ergibt dies in Summe 1 (oder 100 %). Kennst du das Ereignis kannst du damit das Gegenereignis ausrechnen und umgekehrt.

 

Nichtlineare analytische Geometrie in der Ebene

Die analytische Geometrie ist ein Teilgebiet der Geometrie. Die Geometrie wiederum ist die Lehre von zweidimensionalen Figuren wie Punkten, Geraden und Vielecken sowie dreidimensionalen Körpern wie Kugeln und Würfeln. In der elementaren Geometrie wird ein Kreis als Menge aller Punkte mit einem festen Abstand zu einem vorgegebenen Punkt definiert. Die Kreisgleichung beschreibt so jeden Punkt (x,y), der den Abstand r zum Mittelpunkt hat. Ein Kreis (bzw. eine Kreislinie) ist eine Linie in der Ebene bei der jeder Punkt denselben Abstand zu einem bestimmten Punkt, den sogenannten Mittelpunkt, hat. Diesen Abstand nennt man Radius. Dieser wird mit dem Buchstaben r bezeichnet.

Ein Kreis ist natürlich ebenso eine ebene geometrische Figur. Du kannst den Kreis als Menge aller jener Punkte einer Ebene bezeichnen, die den gleichen konstanten Abstand zu einem vorgegebenen Punkt dieser Ebene (dem Mittelpunkt des Kreises) haben. Der Abstand aller Kreispunkte zum Mittelpunkt ist der Radius oder der halbe Durchmesser d/2 des Kreises. Er muss eine positive reelle Zahl sein. Der Kreis gehört zu den klassischen und grundlegenden Objekten der euklidischen Geometrie.

Bei der Elementargeometrie untersuchst du geometrische Objekte wie Punkte, Geraden, Dreiecke, Vierecke und Kreise ohne Zuhilfenahme von Methoden aus der linearen Algebra oder Analysis. Ausgehend von Grundbegriffen wie Punkte und Geraden definierst du hier Strecken, Winkel und ebene Figuren.

Was ist die analytische Geometrie?

Die analytische Geometrie ist – wie oben erwähnt – ein Teilgebiet der Geometrie. Mithilfe der analytischen Geometrie kannst du algebraische Hilfsmittel (vor allem aus der linearen Algebra) verwenden, um geometrischer Probleme zu lösen. Sie ermöglicht es dir in vielen Fällen, geometrische Aufgabenstellungen rein rechnerisch zu lösen, ohne eine zeichnerische Anschauung zur Hilfe nehmen zu müssen.

Wenn du bei der Ermittlung solcher geometrischen Probleme ohne Ansätze und ohne Bezug zu einem Zahlensystem auf einer axiomatischen Grundlage einen Lösungsansatz herleitest, bezeichnet man diese Geometrie als synthetische Geometrie.

Die Verfahren der analytischen Geometrie werden in allen Naturwissenschaften angewendet. Vor allem aber in der Physik, wie zum Beispiel bei der Beschreibung von Planetenbahnen. Ursprünglich befasste sich die analytische Geometrie nur mit Fragestellungen der ebenen und der räumlichen (euklidischen) Geometrie. Im allgemeinen Sinn jedoch beschreibt die analytische Geometrie affine Räume beliebiger Dimension über beliebigen Körpern.

Entscheidendes Hilfsmittel der analytischen Geometrie ist ein Koordinatensystem. In der Praxis verwendet man meist ein kartesisches Koordinatensystem. Für manche einfache Fragestellungen, wie etwa die Bestimmung von Schnittpunkten zweier oder mehrer Geraden oder die Untersuchung von Geraden auf Parallelität oder die Berechnung von Teilverhältnissen und vieles mehr, würde allerdings auch ein schiefwinkliges Koordinatensystem ausreichen. Unverzichtbar ist ein kartesisches Koordinatensystem, wenn man Abstände oder Winkel berechnen soll.

Was ist der Einheitskreis?

In der Mathematik ist der Einheitskreis jener Kreis, dessen Radius die Länge von genau 1 Einheit hat und dessen Mittelpunkt mit dem Koordinatenursprung eines kartesischen Koordinatensystems der Ebene übereinstimmt.

Der Begriff Einheitskreis enthält die zwei Bestandteile Einheit und Kreis. Mit Kreis ist seine geometrische Form gemeint. Das heißt, es handelt sich um einen Kreis. Die Bezeichnung Einheit bezieht sich auf folgende Beobachtung: Wenn du irgendeinen Punkt entlang des Kreises annimmst, dann besitzt dieser Punkt einen Abstand zum Mittelpunkt des Kreises von exakt 1 Einheit. Sehr oft ist der Mittelpunkt des Einheitskreises mit dem Ursprung eines Koordinatensystems identisch.

Für was brauche ich den Einheitskreis?

Mit Hilfe des Einheitskreises kannst du die Definition der Winkelfunktionen  Sinus, Cosinus und Tangens auf alle Winkel erweitern. Zusätzlich erlaubt er dir die charakteristischen Kurven dieser Winkelfunktionen zu konstruieren.

Allgemein ist der Rand eines →Kreises um den Ursprung mit Radius r definiert als jene Ansammlung aller Punkte P, die zum Ursprung den Abstand des Radius r besitzen.

Ein Kreis, dessen Radius die Länge r = 1 LE (Längeneinheit) hat, ist ein Einheitskreis. Ein Winkel im Einheitskreis hat seinen Scheitelpunkt im Ursprung. Seine Schenkel sind die positive x-Achse und der Radius r.

Mit dem Einheitskreis Kosinus und Sinus erklären

Im Einheitskreis kannst du die Werte von Cosinus und Sinus direkt ablesen. Da die Hypotenuse (Radius r) gleich 1 ist. Somit ist dann die Länge der Ankathete gleich dem Cosinus und die Länge der Gegenkathete ist gleich dem Sinus. Du teilst ja schließlich beide durch die Hypotenuse (→Trigonometrie). Da die Hypothenuse beim Einheitskreis immer 1 ist, ist die Ankathete gleich dem Cosinus und die Gegenkathete gleich dem Sinus. Wie du dann siehst, ist der Cosinus maximal – nämlich exakt 1 – bei einem Winkel von 0° und 180° und minimal – exakt 0 – bei einem Winkel von 90° und 270°.

Der Kosinus- und Sinussatz  ist einer der fundamentalen Lehrsätze der Geometrie und dem Gebiet der →Trigonometrie zugehörig. Er ist sehr eng verwandt mit dem Satz des Pythagoras. Für Dreiecke in der Ebene kannst du ja denn Kosinussatz sehr einfach formulieren, für sphärische benötigst du sechs Winkelfunktionen. In beiden Fällen beinhaltet er drei Identitätsgleichungen, welche die Beziehungen zwischen den Längen der Seiten von Dreiecken und den Kosinuswerten ihrer Winkel darstellen.

Cookie Consent mit Real Cookie Banner