Quadratische Gleichungen einfach lösen

Um quadratische Gleichungen in allgemeiner Form zu lösen, verwendest du die Mitternachtsformel (auch abc-Formel genannt) oder große Lösungsformel. Wenn die quadratische Gleichung in Normalform gegeben ist, kannst du die p-q-Formel oder kleine Lösungsformel anwenden. Kommt die Variable in einer Gleichung in der 1. und 2. Potenz ( x und x² ) vor, nennt man sie „gemischt quadratische Gleichung“. Kommt in einer Gleichung die Variable in der 2. Potenz (x²) vor , nennt man sie „rein quadratische Gleichung“

quadratische Gleichungen sind  →Gleichungen, die sich in der Form

mit  a ≠ 0 schreiben lassen.

Die Koeffizienten von quadratischen Gleichungen können beliebige reelle Zahlen sein (mit der einzigen Einschränkung, dass a nicht Null sein darf). Um den Umgang mit quadratischen Gleichungen zu lernen, werden oft vorwiegend Beispiele herangezogen, bei denen die Koeffizienten ganzzahlig sind.

Dabei heißt ax2 quadratisches Glied, bx lineares Glied und c konstantes Glied (oder auch Absolutglied) der Gleichung. Die Gleichung ist in Normalform, falls a=1, also wenn das quadratische Glied den Koeffizienten 1 hat. Aus der allgemeinen Form lässt sich die Normalform durch →Äquivalenzumformungen gewinnen, indem durch a≠0 dividiert wird.

In praktischen Anwendungen muss dies nicht unbedingt der Fall sein. Die linke Seite einer quadratischen Gleichung ist der Term einer quadratischen Funktion (allgemeiner ausgedrückt: ein Polynom zweiten Grades), der Funktionsgraph dieser Funktion im Kartesischen Koordinatensystem ist eine Parabel. Geometrisch beschreibt die quadratische Gleichung die Nullstellen dieser Parabel.

Was sind Lösungen von quadratischen Gleichungen

Eine Lösung der quadratischen Gleichung ist eine Zahl, die die Gleichung erfüllt, wenn sie für x eingesetzt wird. Jede quadratische Gleichung hat, wenn man komplexe Zahlen als Lösungen zulässt, genau zwei (gegebenenfalls zusammenfallende) Lösungen, auch Wurzeln der Gleichung genannt. Betrachtet man nur die reellen Zahlen, so hat eine quadratische Gleichung null bis zwei Lösungen.

Eine Lösung der quadratischen Gleichung ist eine Zahl, die die Gleichung erfüllt, wenn sie für x eingesetzt wird. Jede quadratische Gleichung hat, wenn man komplexe Zahlen als Lösungen zulässt, genau zwei (gegebenenfalls zusammenfallende) Lösungen. Auch Wurzeln der Gleichung genannt. Betrachtet man nur die reellen Zahlen, so hat eine quadratische Gleichung null bis zwei Lösungen.

Siehe auch →Quadratische Polynome faktorisieren und →Nullstellen.

Was sind reelle Funktionen?

Eine reellwertige Funktion ist in der Mathematik eine Funktion, deren Funktionswerte reelle Zahlen sind. Eng verwandt ist der Begriff der reellen Funktion, der aber in der Literatur nicht eindeutig verwendet wird. Reelle Funktionen finden sich in fast allen Teilbereichen der Mathematik. Insbesondere in der Analysis, der Funktionalanalysis und der Optimierung.

Der Begriff der reellen Funktion wird in der mathematischen Literatur nicht einheitlich verwendet. Teilweise ist dieser Begriff synonym zu einer reellwertigen Funktion. Andererseits werden darunter auch nur Funktionen verstanden, deren Definitionsmenge eine Teilmenge der reellen Zahlen ist.

Reelle Funktionen sind Abbildungen. In diesen sind sowohl die Definitionsmenge als auch die Wertemenge Teilmengen von R sind.

Globale Extremstellen einer Funktion geben an, wo ihre Funktionswerte minimal bzw. maximal werden. Die globalen Extrema sind die zugehörigen Funktionswerte.  

An einer lokalen Extremstelle ändert sich die Monotonie der Funktion.

Jedes globale Extremum ist entweder ein lokales Extremum oder es liegt am Rand des Definitionsbereiches. Wir unterscheiden folgende Arten von Extremstellen: lokal oder global und Minimum oder Maximum.

In der Mathematik sind periodische Funktionen eine besondere Klasse von →Funktionen. Sie haben die Eigenschaft, dass sich ihre Funktionswerte in regelmäßigen Abständen wiederholen. Die Abstände zwischen dem Auftreten der gleichen Funktionswerte nennt man Periode. Einfache Beispiele sind Sinus- und Kosinus-Funktionen. Damit du auch Funktionen mit Lücken im Definitionsbereich, wie die Tangens-Funktion, zu den periodischen Funktionen zählen kannst, erlaubt man →Definitionsbereiche mit periodischen Lücken. Eine periodische Funktion besitzt allerdings nicht nur eine Periode. Denn jedes Vielfache einer Periode ist auch wieder eine Periode.

Reelle Funktionen können sich verändern

Ein Änderungsmaß beschreibt die Änderung einer Zahl. Es gibt verschiedene Änderungsmaße.

1. Die absolute Änderung entspricht der Differenz aus „oberem Wert“ minus „unterem Wert“. Sie hat im Unterschied zur relativen oder prozentuellen Änderung eine physikalische Einheit.

2. Die relative oder prozentuelle Änderung ist die absolute Änderung „bezogen auf den“ oder „relativ zum“ Grundwert. Sie hat keine physikalische Einheit.

3. Der Differenzenquotient (die Steigung der Sekante, die mittlere Änderungsrate) beschreibt das Verhältnis der Veränderung einer abhängigen Größe zur Veränderung einer unabhängigen Größe.

Cookie Consent mit Real Cookie Banner